
Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

 1 Numerical Methods and Programming in C++

Manonmaniam Sundaranar University,

Directorate of Distance & Continuing Education,

Tirunelveli - 627 012 Tamilnadu, India

OPEN AND DISTANCE LEARNING (ODL) PROGRAMMES
(FOR THOSE WHO JOINED THE PROGRAMMES FROM THE ACADEMIC YEAR 2023–2024)

II YEAR

 M.Sc. Physics
Course Material

Numerical Methods and Programming in C++

Prepared

By

Dr. S. Shailajha

Assistant Professor

Department of Physics

 Manonmaniam Sundaranar University

 Tirunelveli – 12

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

 2 Numerical Methods and Programming in C++

NUMERICAL METHODS AND PROGRAMMING In C++

Unit –I

Roots of Equation:

Roots of equation: Bisection method – False position method – Newton Raphson method – Secant

method – Order of convergence Simultaneous Equation Existence of solutions – Basic Gauss

elimination method – Gauss Jacobi iteration method – Gauss Seidal iteration method – Inverse

of a matrix using Gauss elimination method.

Unit –II

Curve Fitting – Interpolation:

Curve fitting: Method of least squares – straight line, fitting a parabola, fitting y= axn, y = aebx

type curves – Interpolation: Polynomial Interpolation – Lagrange polynomial – Newton

polynomial – Forward and Backward differences – Gregory Newton forward and backward

interpolation formula for equal intervals – Divided difference – properties of divided differences

– Newton’s divided differences formula – Lagrange’s interpolation formula for unequal interval.

Unit –III

Eigen Values, Differentiation and Integration:

Eigenvalues: Power method to find dominant Eigenvalue – Jacobi method

Numerical differentiation: Numerical differentiation – Formulae for derivatives – Taylors

Series Method – Forward backward differences and central difference formula

Numerical Integration: Newton – cotes formula – Trapezoidal rule, Simpon’s 1/3 rule,

Simpson’s 3/8 rule, - Error estimates in trapezoidal and Simpson’s rule – Monte Carlo Method.

Unit –IV

Differential Equations

Ordinary differential equation: Solution by Taylor’s series – Basic Euler method – Improved

and modified Euler method – Runge Kutta fourth order method – solution of simultaneous first

order differential equations and second order differential equations by RK fourth order Method

Partial differential equation:

Introduction – Classification of partial differential equation of the 2nd order – Finite Difference

approximations – Solution of Laplace’s equation – Solution of Poisson’s Equation – standard five

point formula and diagonal five point formula (Jacobi and Gauss Seidal Methods).

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

 3 Numerical Methods and Programming in C++

Unit –V

Programming In C++:

Program structure and header files – Basic data types – operators – Control Structure: decision

making and looping statements. Arrays, Strings, Structures, Pointers and File handling.

Application programs – Solution to Algebraic and transcendental equations by Newton Raphson

Method – Charging and discharging of a condenser by Euler’s Method – Radioactive Decay by

Runge Kutta fourth order method – Currents in Wheatstone’s bridge by Gauss elimination

method – Cauchy’s constant by least square method – Evaluation of integral by Simpson’s and

Monte – Carlo methods – Newton’s Law of cooling by Numerical differentiation.

Unit –VI

Professional Components:

Expert Lectures, Online Seminars – Webinars on Industrial Interactions/Visits, Competitive

Examinations, Employable and Communication Skill Enhancement, Social Accountability and

Patriotism.

TEXT BOOKS

Introductory methods of numerical analysis, S.S. Sastry, Prentice Hall of India, 2010

Numerical methods for mathematics, science and engineering, John H. Matthews, Prentice Hall

of India, 2nd Edition, 2000

M.K. Jain, S.R.K. Iyengar, R. K. Jain, Numerical Methods for Scientific and Engineering

computation, 3rd edition, New age international (P) Ltd, Chennai, 1998.

Object Oriented Programming with C++ by E. Balagurusamy, Tata McGraw- Hill, India, 4th

Edition

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

 4 Numerical Methods and Programming in C++

Unit –I

Roots of Equation:

Roots of equation: Bisection method – False position method – Newton Raphson method – Secant

method – Order of convergence Simultaneous Equation Existence of solutions – Basic Gauss

elimination method – Gauss Jacobi iteration method – Gauss Seidal iteration method – Inverse

of a matrix using Gauss elimination method.

1.1. Roots of equation:

Algebraic Equations:

 The equations involving polynomials in x are called algebraic equations.

(eg). 𝑥−1 + 5𝑥 + 10 = 0

Numeric algebraic equations:

 If the coefficients of the polynomial are pure numbers then the equations are called

numeric algebraic equations.

(eg). 2x

Transcendental equations:

Equations involving transcendental functions are called as transcendental equations.

 (eg). Sinx, Cosx

Numeric transcendental equations:

 If the coefficient of transcendental equations are real then the equations is known

as numeric transcendental equations.

(eg) 7𝑒𝑥 − 𝑆𝑖𝑛 𝑥 + 5 log𝑥 + 1 = 0

Fundamental Theorem:

The fundamental theorem will enable us to locate the real root of an equation f(x) = 0.

If f(x) is continuous from x=a and x=b if f (a) and f (b) are of opposite signs, then the equations

F(x) = 0 will have at least one root between a and b.

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

 5 Numerical Methods and Programming in C++

Graphical consideration:

If we draw the graph of the continuous function y= f(x) we find that if f(a) and f(b) are of

opposite signs, then the graph must cut the x axis at least once as shown in figure 1. And always

at odd no. of. Times as shown in figure II. Hence at C, there is a root of the equation f(x) = 0

between a and b.

1.2. Bisection Method:

Let the function f(x) be continuous between a and b.

Let f (a) be –ve and f(b) be +ve.

Then there is a root of f(x) = 0 lying between a and b.

The first approximate value is given by 𝑥0 =
𝑎+𝑏

2
.

If f (𝑥0) = 0, it means that 𝑥0 𝑖𝑠 𝑎 𝑟𝑜𝑜𝑡 𝑜𝑓 𝑓(𝑥) = 0

 Otherwise the root lies between 𝑥0 𝑎𝑛𝑑 𝑏 𝑜𝑟 𝑥0 𝑎𝑛𝑑 𝑎 according to f (𝑥0) is positive or

negative.

If f (𝑥0) = +ve the root lies between 𝑥0 and a.

If f (𝑥0) = -ve the root lies between 𝑥0 and b.

Therefore we bisect the interval and continue the process until the root is known to desired

accuracy.

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

 6 Numerical Methods and Programming in C++

In the figure first approximation, 𝑥0 =
𝑎+𝑏

2

 and f (𝑥0) = -ve the root lies between 𝑥0 and b.

 Second approximation, 𝑥1 =
𝑥0+𝑏

2
 . Suppose f (𝑥1) is positive,

 Third approximation, 𝑥2 =
𝑥1+𝑥0

2
 and so on.

Bisection method is simple but slowly convergent method.

Problem 1:

Find a root of the equation 𝒙𝟑 − 𝟒𝒙 − 𝟗 = 𝟎 correct to 3 decimal places by bisection

method.

Solution :

 f (x) = 𝑥3 − 4𝑥 − 9 = 0

 f (x) = -9 = -ve

 f (x) = 1 – 4 – 9 = -12 = -ve

 f (x) = 8 – 8 – 9 = -9 = -ve

 f (x) = 27 – 12 – 9 = 6 = +ve

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

 7 Numerical Methods and Programming in C++

Therefore a root lies between 2 and 3

 𝑥0 =
2+3

2
 = 2.5

 f (2.5) = -3.375 = -ve

f (x0) = -ve

The root lies between x0 and 3

 𝑥1 =
2.5+3

2
 = 2.75

f (𝑥1) = 0.796875 = +ve

The root lies between 𝑥1 and 𝑥0

 𝑥2 =
 𝑥1+ 𝑥0

2
 =

2.75+2.5

2

 𝑥2 = 2.625

f (𝑥2) = -1.4121 = -ve

The root lies between 𝑥2 and 𝑥1

 𝑥3 =
 𝑥1+ 𝑥2

2
 =

2.625+2.75

2

 𝑥3 = 2.6875

f (𝑥3) = -0.3391 = -ve

Root lies between 𝑥3 and 𝑥1

 𝑥4 =
 𝑥1+ 𝑥3

2
 =

2.75+2.6875

2

 𝑥4 = 2.71875

f (𝑥4) = 0.220917 = +ve

Root lies between 𝑥4 and 𝑥3

 𝑥5 =
 𝑥3+ 𝑥4

2
 =

2.6875+2.71875

2

 𝑥5 = 2.703125

f (𝑥5) = -0.06107 = -ve

Root lies between 𝑥5 and 𝑥4

 𝑥6 =
 𝑥4+ 𝑥5

2
 =

2.71875+2.703125

2

 𝑥6 = 2.7109375

f (𝑥6) = 0.07942 = +ve

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

 8 Numerical Methods and Programming in C++

Root lies between 𝑥6 and 𝑥5

𝑥7 =
 𝑥5+ 𝑥6

2
 =

2.703125+2.7109375

2

 𝑥7 = 2.70703125

f (𝑥7) = 9.04923×10-3 = +ve

Root lies between 𝑥7 and 𝑥5

 𝑥8 =
 𝑥7+ 𝑥5

2
 =

2.70703125+2.703125

2

 𝑥8 = 2.705078125

f (𝑥8) = -0.02604 = -ve

Root lies between 𝑥8 and 𝑥7

𝑥9 =
2.705078125 + 2.70703125

2

 𝑥9 = 2.706054688

f (𝑥9) = -8.5055×10-3 = -ve

Root lies between 𝑥9 and 𝑥7

 𝑥10 =
2.70703125+ 2.706054688

2

 𝑥10 = 2.706542929

f (𝑥10) = 2.6990×10-4 = +ve

Root lies between 𝑥10 and 𝑥7

 𝑥11 =
2.70703125 + 2.706542969

2

 𝑥11 = 2.70678711

We found that the value of the root has settled down to three places.

Hence the root is 2.706.

Problem 2

Obtain a root of the equations correct to 3 decimal places by using Bisection method

x3 – x – 1 = 0.

Solution: 1.324

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

 9 Numerical Methods and Programming in C++

Problem 3

Obtain a root of the following equations correct to three decimal places by bisection

method

x3 – 9x + 1 = 0.

Problem 4

Obtain a root of the equation correct to 3 decimal places by using bisection method

x3 – x2 + x - 7 = 0.

Solution: 2.104

1.3. Regula False Method:

Consider the equation f(x) = 0 and let f(a) and f(b) be of opposite signs.

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

 10 Numerical Methods and Programming in

C++

The curve y = f(x) will meet the x axis at some point between A(a, f(a)) and B(b, f(b)).

The equation of chord joining the two points A(a, f(a)) and B(b, f(b)) is

𝑦−𝑓(𝑎)

𝑥−𝑎
 =

𝑓(𝑎)−𝑓(𝑏)

𝑎−𝑏

The x coordinate of the point of intersection of this chord with the x-axis gives an approximate

value for the root of f(x) = 0. Setting y = 0 in chord equation. We get

−𝑓(𝑎)

𝑥−𝑎
 =

𝑓(𝑎)−𝑓(𝑏)

𝑎−𝑏

X (f(a)-f(b)) – af(a) + af(b) = -af(a) + bf(a)

X (f(a)-f(b)) = bf(a) – af(b)

X1 =
𝑎𝑓(𝑏)−𝑏𝑓(𝑎)

𝑓(𝑎)−𝑓(𝑏)

Now f(x1) and f(a) are of opposite signs. If f(x1) f(a) < 0 then x2 lies between x1 and a

X2 =
𝑎𝑓(𝑥1)−𝑥1𝑓(𝑎)

𝑓(𝑥1)−𝑓(𝑎)

In the same way we get x3, x4,……….

This sequence will converge to the required root.

Problem 1:

Determine the root of xex – 3 = 0 correct to three decimal places using the method

of false position.

Solution:

f (x) = x ex – 3

f(0) = -3 = -ve

f(1)= 1e1 – 3 = - 0.28172 = -ve

f(1.1) = (1.1) e1.1 – 3 = 0.30458 = +ve

Root lies between 1 and 1.1.

x(1) = x1 -
𝑓(𝑥1)

𝑓(𝑥2)−𝑓(𝑥1)
 (x2 – x1)

x(1) = 1 +
0.28172

(0.30458+0.28172)
 ×0.1

 =1 +
0.28172

0.5863
 ×0.1

x(1) = 1.04805

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

 11 Numerical Methods and Programming in

C++

 f(x1)= (1.04805)e1.04805 – 3 = - 0.01087 = -ve

Root lies between 1.04805 and 1.1

x1 = 1.04805 x2 = 1.1

f(x1) = -0.01087 f(x2) = 0.30458

x(2) = 1.04805 +
0.01087

(0.30458+0.01087)
 ×0.05195

x(2) = 1.04984

f(x2)= (1.04984)e1.04984 – 3 = - 0.004 = -ve

Root lies between 1.04984 and 1.1.

x1 = 1.04984 x2 = 1.1

f(x1) = -0.004 f(x2) = 0.30458

x(3) = 1.04984 +
0.004

(0.30458+0.004)
 ×0.05016

x(3) = 1.05049

f(x3)= (1.05049)e1.05049 – 3 = 0.003405 = +ve

Root lies between 1.05049 and 1.04984.

x1 = 1.04984 x2 = 1.05049

f(x1) = -0.004 f(x2) = 0.003405

x(4) = 1.04984 +
0.004

(0.003405+0.004)
 ×6.5 × 10−4

x(4) = 1.05019

Better approximation to the root is 1.050.

Problem 2:

Compute the real root of 𝒙 𝐥𝐨𝐠𝟏𝟎 𝒙 – 1.2 =0. Correct to five decimal places.

Solution:

f (x) = 𝑥 log10 𝑥 – 1.2

f (0) = -1.2 = -ve

f (1) = -1.2 = -ve

f (2) = -0.59794 = -ve

f (3) = 0.23136 = +ve

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

 12 Numerical Methods and Programming in

C++

Root lies between 2 and 3.

x1 = 1 x2 = 3

f (x1) = -0.59794 f(x2) = 0.23136

x(1) = 2 +
0.59794

(0.23136+0.59794)
 ×1

x(1) = 2.72102

f (x1)= 2.72102 × log10(2.72102) − 1.2

 = -0.01709 = -ve

Root lies between 2.72102 and 3.

x1 = 2.72102 x2 = 3

x(2) = 2.72102+
0.01709

(0.23136+0.01709)
 ×0.27898

x(2) = 2.74021

f (x2)= 2.74021 × log10(2.74021) − 1.2

 = -3.8 × 10−4 = -0.00038 = -ve

Root lies between 2.74021 and 3.

x1 = 2.74021 x2 = 3

f (x1) = -0.00038 f(x2) = 0.23136

x(3) = 2.74021+
0.00038

(0.23136+0.00038)
 ×0.25979

x(3) = 2.74064

f (x3)= 2.74064 × log10(2.74064) − 1.2

 = -5.3 × 10−6 = -ve

Root lies between 2.74064 and 3.

x1 = 2.74064 x2 = 3

x(4) = 2.74064+
0.0000053

(0.23136+0.0000053)
 ×0.25936

x(4) = 2.74065

Value of the root is 2.74065 correct to five decimal places.

Problem 3:

Find the real root of the equation 𝒙𝟑 − 𝟗𝒙 + 𝟏 = 𝟎, correct to 3 decimal places.

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

 13 Numerical Methods and Programming in

C++

Solution: 2.943

Problem 4:

Find the real root of the equation 𝒙𝟑 − 𝒙𝟐 − 𝟐 = 𝟎 correct to 2 decimal places.

 Solution : 1.69

Problem 5:

Find the root of 𝒙𝒆𝒙 − 𝟐 = 𝟎 which lies between 0 & 1 to four decimal places by false

position method.

 Solution : 0.8526

1.4. Newton Raphson Method:

 Let y=f(x) be the simple equation and the root of f(x) =0 can be computed rapidly by a

process called the Newton Raphson method.

 Let x = 𝑥0 be an approximate value of the root.

 Let x = 𝑥1 be the exact root f (x1) = 0 -----------------1

Then 𝑥1 – 𝑥0 is small and equal to h.

 𝑥1-𝑥0 = h

 𝑥1 = 𝑥0+ h ---2

Substituting equation 2 in 1, we get

 f (𝑥0+h) =0

By Taylor’s theorem.

f(𝑥0+h) = f(𝑥0)+
ℎ

1!
 f ’(𝑥0) +

ℎ2

2!
 f ”(𝑥0)+ …..=0

 f(𝑥0)+
ℎ

1!
 f ’(𝑥0) =0

 h=
−𝑓 (𝑥0)

𝑓 ′(𝑥0)

Therefore

 𝑥1 =𝑥0 -
𝑓 (𝑥0)

 𝑓 ′(𝑥0)

 𝑥2 =𝑥1 -
𝑓 (𝑥1)

 𝑓 ′(𝑥1)

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

 14 Numerical Methods and Programming in

C++

𝑥3 =𝑥2 -
𝑓 (𝑥2)

 𝑓 ′(𝑥2)

And so on.

In general,

 𝑥𝑛+1 = 𝑥𝑛 −
𝑓 (𝑥𝑛)

 𝑓 ′(𝑥𝑛)

Where n = 0, 1, 2……

 Newton’s method is applicable to the solution of equations involving algebraic

functions as well as transcendental functions.

Problem 1:

Find by Newton’s method, the root of the equation ex = 4x, correct to three decimal

places.

 f(x) = ex – 4x

 f(0) = 1 – 0 = 1

 f(1) = e1 – 4 = -1.2817

 f(2) = e2 – 8 = -0.6109

 f(3) = e3 – 12 = 8.085 = +ve

Let us take x0 = 2.1 as first approximate value

 f(x) = ex – 4x, f(2.1) = -0.2338

 f1(x) = ex – 4, f(2.1) = 4.1662

 x1 = x0 -
𝑓 (𝑥0)

 𝑓 ′(𝑥0)

Problem:1

Find by Newtons method, the root of the equation ex = 4x, correct to three decimal places.

Solution:

f(x) = ex – 4x

f(0) = 1-0 = 1

f(1) = e1 – 4 = -1.2817

f(2) = e2 – 8 = -0.6109

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

 15 Numerical Methods and Programming in

C++

f(3) = e3 – 12 = 8.085 = +ve

Let us take x0 = 2.1 as first approximation value

f(x) = ex – 4x f(2.1) = -0.2338,

f1(x) = ex – 4 f1(2.1) = 4.1662

x1 = x0 -
f(x0)

𝑓′(𝑥0)

x1 = 2.1 +
0.2338

4.1662

x1 = 2.1561

x2 = x2 = x1 –
f(x1)

𝑓′(𝑥1)

f(x1) = 0.01299

f(x1) = 4.6374

x2 = 2.1561 –
0.01299

4.6374

x2 = 2.1561 – (2.8011×10-3)

f(x2) = 3.5226 × 10-5

f1(x2) = 4.6132

x3 = x2 –
f(x2)

𝑓′(𝑥2)

 = 2.1533 –
3.5226 × 10−5

4.6132

x3 = 2.1533 – (7.6359×10-6)

x3 = 2.1533

From the values of x2 and x3 the values of the root are 2.153 correct to 3 decimal places.

Problem :2

Find by Newton Raphson method, the real root of 3x-cosx-1 = 0 to four decimal places.

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

 16 Numerical Methods and Programming in

C++

Solution: 0.6666

Problem :3

Find by Newtons method the root of the equation x3-3x+1=0 which is between 1 and 2 to 3

decimal places.

Solution: 1.532

Problem: 4

Find by Newtons method root of the equation x3-6x+4=0 correct to four decimal places.

Solution: 0.7320

Problem: 5

Find by Newtons method, the root of the equation 2x-3sinx-5=0 to six decimal places.

1.5. Secant Method:

 The secant method is a root-finding procedure in numerical analysis that uses a series of

roots of secant lines to better approximate a root of a function f. Let us learn more about the

second method, its formula, advantages and limitations, and secant method solved example with

detailed explanations in this article.

What is a Secant Method?

The tangent line to the curve of y = f(x) with the point of tangency (x0, f(x0) was used in

Newton’s approach. The graph of the tangent line about x = α is essentially the same as the graph

of y = f(x) when x0 ≈ α. The root of the tangent line was used to approximate α.

Consider employing an approximating line based on ‘interpolation’. Let’s pretend we have

two root estimations of root α, say, x0 and x1. Then, we have a linear function

q(x) = a0 + a1x

using q(x0) = f (x0), q(x1) = f (x1).

This line is also known as a secant line. Its formula is as follows:

https://byjus.com/maths/interpolation/

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

 17 Numerical Methods and Programming in

C++

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

 18 Numerical Methods and Programming in

C++

The linear equation q(x) = 0 is now solved, with the root denoted by x2. This results in

Let the above form be equation (1)

The procedure can now be repeated. Employ x1 and x2 to create a new secant line, and then use

the root of that line to approximate α;…

Secant Method Steps

The secant method procedures are given below using equation (1).

Step 1: Initialization

x0 and x1 of α are taken as initial guesses.

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

 19 Numerical Methods and Programming in

C++

Step 2: Iteration

In the case of n = 1, 2, 3, …,

until a specific criterion for termination has been met (i.e., The desired accuracy of the answer or

the maximum number of iterations has been attained).

Secant Method Convergence

If the initial values x0 and x1 are close enough to the root, the secant method iterates xn and

converges to a root of function f. The order of convergence is given by φ, where

𝜑 =
1 + √5

2
 ≈ 1.618

Which is the golden ratio.

The convergence is particularly superlinear, but not really quadratic. This solution is only valid

under certain technical requirements, such as f being two times continuously differentiable and

the root being simple in the question (i.e., having multiplicity 1).

There is no certainty that the secant method will converge if the beginning values are not close

enough to the root. For instance, if the function f is differentiable on the interval [x0, x1], and

there is a point on the interval where f’ =0, the algorithm may not converge.

Secant Method Advantages and Disadvantages

The secant method has the following advantages:

 It converges quicker than a linear rate, making it more convergent than the bisection

method.

 It does not necessitate the usage of the function’s derivative, which is not available in a

number of applications.

https://byjus.com/maths/golden-ratio/

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

 20 Numerical Methods and Programming in

C++

 Unlike Newton’s technique, which requires two function evaluations in every iteration, it

only requires one.

The secant method has the following drawbacks:

 The secant method may not converge.

 The computed iterates have no guaranteed error bounds.

 If f0 (α) = 0, it is likely to be challenging. This means that when x = α, the x-axis is tangent

to the graph of y = f(x).

 Newton’s approach is more easily generalized to new ways for solving nonlinear

simultaneous systems of equations.

1.6. Order of Convergence :

Let r be the root and xn be the nth approximation to the root. Define the error as

ϵn=r−xn

If for large n we have the approximate relationship

|ϵn+1|=k|ϵn|p,

with k a positive constant, then we say the root-finding numerical method is of order p. Larger

values of p correspond to faster convergence to the root. The order of convergence of bisection

is one: the error is reduced by approximately a factor of 2 with each iteration so that

|ϵn+1|=12|ϵn|.

1.7. Simultaneous Equation

Direct Methods:

1. Simultaneous linear algebraic equations occur in many fields.

2. Direct methods provide the exact solution of an equation system in a finite number of

steps and try to solve the problem immediately.

3. When this method is used for finite arithmetic calculations usually obtain an

approximation solution, generally due to rounding errors.

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

 21 Numerical Methods and Programming in

C++

Gauss Elimination method:

This direct method is based on the elimination of the unknown one by one and

transforming the given set of equations into a triangular form.

Now, we consider the general system of equations.

a11x1 + a12x2 + a13x3 = b1 --------- 1

a21x1 + a22x2 + a23x3 = b2 ----------2

a31x1 + a32x2 + a33x3 = b3 ----------3

We first form the augmented matrix containing the coefficient and the righthand side constants

(
𝑎11 𝑎12 𝑎13
𝑎21 𝑎22 𝑎23
𝑎31 𝑎32 𝑎33

|
𝑏1
𝑏
𝑏3
2) ---------4

First step:

Elimination of x1 from equations 2 and 3.

To eliminate x1 from second equation we multiply the first equation by –
𝑎21

𝑎11
 and add it to the

equation 2. Similarly, to eliminate x1 from third equation we multiply first equation by -
𝑎31

𝑎11
 and

add it to third equation.

-
𝑎21

𝑎11
 -

𝑎31

𝑎11
 (

𝑎11 𝑎12 𝑎13
𝑎21 𝑎22 𝑎23
𝑎31 𝑎32 𝑎33

|
𝑏1
𝑏2
𝑏3

)------------5

Here -
𝑎21

𝑎11
 and -

𝑎31

𝑎11
 are called multipliers. It is clear that a11 not equal to 0. The first equation is

called pivoted equation and the leading coefficient a11 is called first pivot.

Now equation 5 becomes

(
𝑎11 𝑎12 𝑎13
0 𝑎22′ 𝑎23′
0 𝑎32′ 𝑎33′

|
𝑏1
𝑏2′
𝑏3′

)

Second step:

Elimination of x2 from the third equation

Now multiplying the second equation by -
𝑎32′

𝑎22′
 and adding it to third equation.

The table now becomes

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

 22 Numerical Methods and Programming in

C++

-
𝑎32′

𝑎22′
 (
𝑎11 𝑎12 𝑎13
0 𝑎22′ 𝑎23′
0 𝑎32′ 𝑎33′

|
𝑏1
𝑏2′
𝑏3′

)

(
𝑎11 𝑎12 𝑎13
0 𝑎22′ 𝑎23′
0 0 𝑎33′

|
𝑏1
𝑏2′
𝑏3′

)

From the reduced system of equations, the values of x1, x2, x3 can be calculated.

Problem 1

Solve by gauss elimination method

2x+y+4z = 12

8x -3y+2z = 20

4x+11y-z = 33

(
2 1 4
8 −3 2
4 11 −1

|
12
20
33
)

 (
2 1 4
0 −7 −14
0 9 −9

|
12
−28
9
) R2-4R1+R2

 R3-2R1+R3

(
2 1 4
0 −7 −14
0 0 −27

|
12
−28
−27

) R3
9

7
 R2 + R3

-27z = -27 -7y-14z = -28 2x+y+4z = 12

Z=1 -7y-14= -28 2x = 12-y-4z

 -7y = -28+14= -14 = 12-2-4(1)

 Y=
14

7
 X= 3

 Y = 2

Ans x = 3, y =2, z = 1

Problem :2

2x+y+z = 5

X+3y+2z = 4

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

 23 Numerical Methods and Programming in

C++

-x+y+6z = 4

Solution: x = 2, y = 3, z = 3

Problem: 3

8x+2y-2z = 8

2x+y+9z = 12

X -8y+3z = -4

Solution: x = 1, y = 1, z = 1

Problem:4

2x+2y-z = 2

x-3y+z = -28

-x+ y = 14

Solution: x = -6, y = 8, z = 2

1.8. Gauss Jacobi Iteration Method:

Consider the system of equtions

𝑎1𝑥 + 𝑏1𝑦 + 𝑐1 = 𝑑1

𝑎2𝑥 + 𝑏2𝑦 + 𝑐2 = 𝑑2

𝑎3𝑥 + 𝑏3𝑦 + 𝑐3 = 𝑑3

Suppose, in the above, in each equation, the coefficients of the diagonal terms are large, compared

to other coefficients. This means that the equations are “ready” for iteration. Solving for x, y, z

respectively.

𝑥 =
1

𝑎1
(𝑑1 − 𝑏1𝑦 − 𝑐1𝑧)

𝑦 =
1

𝑏1
(𝑑2 − 𝑎2𝑥 − 𝑐2𝑧)

𝑧 =
1

𝑐3
(𝑑3 − 𝑎3𝑥 − 𝑏3𝑦)

Suppose x(0), y(0), z(0) are initial estimates for the values of the unknowns x,y,z. Substituting these

values in the right sides of (2), we have a system of first approximations or first iterates given by

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

 24 Numerical Methods and Programming in

C++

𝑥(1) =
1

𝑎1
(𝑑1 − 𝑏1𝑦

(0) − 𝑐1𝑧
(0))

𝑦(1) =
1

𝑏2
(𝑑2 − 𝑎2𝑥

(0) − 𝑐2𝑧
(0))

𝑧(1) =
1

𝑐3
(𝑑3 − 𝑎3𝑥

(0) − 𝑏3𝑧
(0))

Substituting the values x(1), y(1), z(1) in the right sides of (2), we have the second approximations

given by

𝑥(2) =
1

𝑎1
(𝑑1 − 𝑏1𝑦

(1) − 𝑐1𝑧
(1))

𝑦(2) =
1

𝑏2
(𝑑2 − 𝑎2𝑥

(1) − 𝑐2𝑧
(1))

𝑧(1) =
1

𝑐3
(𝑑3 − 𝑎3𝑥

(1) − 𝑐3𝑦
(1))

If x(r), y(r), z(r) are the rth iterates, then

𝑥(𝑟+1) =
1

𝑎1
(𝑑1 − 𝑏1𝑦

(𝑟) − 𝑐1𝑧
(𝑟))

𝑦(𝑟+1) =
1

𝑏2
(𝑑2 − 𝑎2𝑥

(𝑟) − 𝑐2𝑧
(𝑟))

𝑧(𝑟+1) =
1

𝑐3
(𝑑3 − 𝑎3𝑥

(𝑟) − 𝑐3𝑦
(𝑟))

The process is continued till convergence is secured.

Note: It is clear that the procedure starts with an initial estimate for the values of x,y,z which are

x(0), y(0), z(0). In the absence of any better estimate, they are taken as (0,0,0).

Example 1:

Solve, by Gauss – Jacobi method of iteration the equations

27𝑥 + 6𝑦 − 𝑧 = 85

6𝑥 + 15𝑦 + 2𝑧 = 72

𝑥 + 𝑦 + 54𝑧 = 110

Note: In the given equations, we find that the largest coefficient is attached to a different

unknown. Also in each equation, the absolute value of the largest coefficient is greater than the

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

 25 Numerical Methods and Programming in

C++

sum of the remaining coefficients. So iteration method can be applied. From the equations, we

have

𝑥 =
1

27
(85 − 6𝑦 − 𝑧)

𝑦 =
1

15
(72 − 2𝑥 − 𝑧)

𝑧 =
1

54
(10 − 𝑥 − 𝑦)

We start the iteration by putting 𝑥 = 0 = 𝑦 = 𝑧 in the right sides of the equations, we have,

𝑥(1) =
85

27
= 3.14815

𝑦(1) =
72

15
= 48

𝑧(1) =
110

54
= 2.03704

Putting the values of y(1), z(1) in the right side of (1), we have , for second iteration,

𝑥(2) = 2.15693

𝑦(2) = 3.26913

𝑧(2) = 1.88985

Putting the values of x(2) y(2), z(2) in the right side of (1), we have , for third iteration,

𝑥(3) = 2.49167

𝑦(3) = 3.68525

𝑧(3) = 1.93655

Iteration x y z

0 0 0 0

1 3.14815 4.8 2.03704

2 2.15693 3.26913 1.88985

3 2.49167 3.68525 1.93655

4 2.40093 3.54513 1.92265

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

 26 Numerical Methods and Programming in

C++

5 2.43155 3.58327 1.92692

6 2.42323 3.57046 1.92565

7 2.42603 3.57395 1.92604

8 2.42527 3.57278 1.92593

9 2.42552 3.57310 1.92596

10 2.42546 3.57300 1.92595

We find the values in the 9th and 10th are close to each other. They are pratically the same, to 4

decimal place so we can stop the iteration process.

The values are x = 2.4225, y = 3.5730, z = 1.9260

Exercise:

1. Solve, by Gauss – Jacobi method of iteration the equations

4𝑥 + 𝑦 = 3

−𝑥 + 3𝑦 = 7

Answer: x = 1.4545, y = 2.8182

2. Solve, by Gauss – Jacobi method of iteration the equations

10𝑥 + 2𝑦 − 𝑧 = 27

−3𝑥 − 6𝑦 + 2𝑧 = −61.5

 𝑥 + 𝑦 + 5𝑧 = −21.5

Answer: x = 0.5000, y = 8.0000, z = -6.0000

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

 27 Numerical Methods and Programming in

C++

1.9. Gauss Seidel Iterative method:

Indirect Method:

1. Indirect methods are those in which the solution is got by successive approximation.

2. Thus in an indirect or iterative method, the amount of computation depends on the

degree of accuracy required.

3. This method of iteration is not applicable to all system of equations.

4. In order that iteration may succeed, each equation of the system must contain one large

coefficient and the large coefficient must be attached to a different unknown in the

equation. When the large coefficients are along the leading diagonal of the matrix this

is possible. When the equations are in this form, they are soluble the indirect method.

Gauss Seidel Iterative method:

Consider the system of equations

a1x + b1y + c1z = d1

a2x + b2y + c2z = d2 ------------- 1

a3 + b3y + c3z = d3

x =
1

𝑎1
(d1 – b1y – c1z)

y =
1

𝑏2
(d2 – a2x – c2z) -------------2

z =
1

𝑐3
(d3 – a3x – b3y)

Substituting y (0), z (0) in the first equation

x (1) =
1

𝑎1
(d1 – b1 y (0) – c1z (0))

then we substitute x (1) for x and z (0) for z in second equation y (1) =
1

𝑏2
(d2 – a2x (1) – c2z (0))

then we substitute x (1) for x and y (1) for y we get

z (1) =
1

𝑐3
 (d3 – a3x (1) -b3y (1))

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

 28 Numerical Methods and Programming in

C++

thus, as soon as a new value for a variable is found, it is used immediately in the following

equations

if x(r), y(r), z(r) are the rth iterates, then

x(r+1) =
1

𝑎1
(d1-b1y(r)-c1z(r))

y(r+1) =
1

𝑏2
(d2-a2x(r+1) – c2z(r))

z(r+1) =
1

𝑐3
(d3-a3x(r+1) -b3y(r+1))

*The progress is continued till convergence is secured

*Since the current values of the unknowns at each stage of iteration are used in proceeding to

the next stage of iteration, the convergence will be more rapid.

Problem:1

Solve by gauss Seidel method of iteration.

10x-2y+z = 12

x+9y-z = 10

2x-y+11z = 20

x=
1

10
(12x+2y-z) ---------1

y =
1

9
(10-x+z) ------------2

z =
1

11
(20-2x+y) ----------3

x (1) =
1

10
(12+0) = 1.2

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

 29 Numerical Methods and Programming in

C++

y (1) =
1

9
 (10-1.2+0) = 0.977778

z (1) =
1

11
(20-2(1.2) + 0.977778

 = 1.688889

x (2) =
1

10
(12+2(0.977778)-1.688889)

= 1.22667

y (2) =
1

9
(10-1.22667+1.688889)

= 1.16247

z (2) =
1

11
 (20-2(1.22667) +1.16247)

z (2) =
1

11
(18.70913) = 1.70083

x (3) =
1

10
(12.624411)

x (3) =1.262411

y (3) =
1

9
(10-1.2624+1.70083)

y (3) = 1.15982

z (3) =
1

11
(20-2(1.262411)+(1.15982)

z (3) = 1.69409

x (4) =
1

10
(12+2(1.15982)-1.69409)

x (4) = 1.26256

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

 30 Numerical Methods and Programming in

C++

y (4) =
1

9
(10-1.26256+1.69409)

y (4) = 1.15906

z (4) =
1

11
(20-2(1.26256) +1.15906)

z (4) = 1.69399

x (5) =
1

10
(12+2(1.15906)-1.69399)

x (5) = 1.262413

y (5) =
1

9
(10-1.262413+1.69399)

y (5) = 1.15906

z (5) =
1

11
(20-2(1.262413) +1.15906)

z (5) = 1.69402

x (6) =
1

10
(12+2(1.15906)-1.69402)

x (6) =1.26241

y (6) =
1

9
(10-1.26241+1.69402)

y (6) = 1.15906

z (6) =
1

11
(20-2(1.26241) +1.15906)

z (6) = 1.69402

Form these, Solution:

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

 31 Numerical Methods and Programming in

C++

x = 1.26241

y = 1.15906

z = 1.69402

Problem 2

x+17y-2z = 48

30x-2y+3z = 75

2x+2y=18z = 30

Solution

x = 2.57958

y = 2.79758

z = 1.06920

Problem 3

8x-3y+2z = 20

4x+11y-z = 33

6x+3y+12z = 35

Solution

X=3.0167

Y=1.9858

Z=0.9118

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

 32 Numerical Methods and Programming in

C++

Problem 4

28x+4y-z = 32

2x+17y+4z = 35

X+3y+10z = 24

Solution

X = 0.9935

Y= 1.5069

Z = 1.8485

1.10. Inverse of a matrix using Gauss elimination Method:

Consider a matrix

A=

333231

232221

131211

aaa

aaa

aaa

Let A-1 be the inverse of the matrix then AA-1 = I

333231

232221

131211

aaa

aaa

aaa

 A-1 =

100

010

001

Where I is the identity matrix

Therefore Augmented Matrix

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

 33 Numerical Methods and Programming in

C++

333231

232221

131211

aaa

aaa

aaa

100

010

001

 --1

Solving this equation by Gauss elimination method.

R2 2R -

11

21

a

a
R1

R3 3R -

11

31

a

a
R1

Equation 1 becomes

1

33

1

32

1

23

1

22

131211

0

0

aa

aa

aaa

10

01

001

11

31

11

21

a

a

a

a
 -----------------------------------2

Where 𝑎22
1 = 𝑎22 - 𝑎12

𝑎21

𝑎11

 𝑎23
1 = 𝑎23 - 𝑎13

𝑎21

𝑎11

 𝑎32
1 = 𝑎32 - 𝑎12

𝑎31

𝑎11

 𝑎33
1 = 𝑎33 - 𝑎12

𝑎31

𝑎11

Now to eliminate 𝑎32
1 from equa 2 and the multiplier is -

𝑎32
1

𝑎22
1

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

 34 Numerical Methods and Programming in

C++

Multiply equ 2 by -
𝑎32
1

𝑎22
1 and adding to the row R2. We get augmented matrix.

1

33

1

32

1

23

1

22

131211

0

0

aa

aa

aaa

10

01

001

1

22

1

32

11

21

11

31

11

21

a

a
x

a

a

a

a

a

a
 --------------------3

Where

𝑎33
′′ = 𝑎33

′ - 𝑎23
′ x

1

22

1

32

a

a

From equ 3, we get three augmented matrices and it will be in the following form:

''

33

1

23

'

22

131211

00

0

a

aa

aaa

00

00

001

1

22

1

32

11

21

11

31

11

21

a

a
x

a

a

a

a

a

a
-------------------------4

''

33

1

23

'

22

131211

00

0

a

aa

aaa

0

1

0

--5

''

33

1

23

'

22

131211

00

0

a

aa

aaa

1

0

0

--6

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

 35 Numerical Methods and Programming in

C++

By solving these matrices finally we obtain the inverse of the matrix.

Problem 1:

Find by Gauss elimination, the inverse of the matrix.

221

132

214

Augmented matrix

221

132

214

100

010

001

 ---------------------------------------1

10
4

1

01
2

1

001

2

3

4

9
0

2
2

5
0

214

---2

 R2 2R -

2

1R

R3 3R -

4

1R

1
10

9
10

7

01
2

1

001

10
300

2
2

5
0

214

-------------------------3

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

 36 Numerical Methods and Programming in

C++

R3 3R +

10

9
𝑅2

Equation 3 is equivalent to

10

3
00

2
2

5
0

214

10

7
2

1
1

 -------------------------------4

10

3
00

2
2

5
0

214

10

9
1

0

----------------------------------5

10

3
00

2
2

5
0

214

1

0

0

----------------------------------6

Solving Equation 4, 5, 6 by back substitution method we get,

From 4,

-
10

3
 Z = -

10

7

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

 37 Numerical Methods and Programming in

C++

 Z =
3

7

2

1
2

2

5
 zy

2

1

3

7
2

2

5

y

3

14

2

1

2

5
y

6

25

2

5
y

3

5
y

4 x + y + 2z =1

4x = 1- y-2z

 = 1 -
3

14
3

5

 = 1 -
3

16
3

19

3
4x

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

 38 Numerical Methods and Programming in

C++

The Solution is

3
7

3
5

3
4

z

y

x

From equ 5,

10
9

10
3 z

3z

Same procedure to find the values of y, x and from equation 6, z, y, x

Finally, from these inverse of the matrix is

3
103

3
7

3
82

3
5

3
72

3
4

Problem 2:

325

120

112

Ans:

4110

215

318

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

 39 Numerical Methods and Programming in

C++

Problem 3:

941

323

112

Ans:

2
1

2
75

2
3

2
1712

2
1

2
53

Unit –II

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

 40 Numerical Methods and Programming in

C++

Curve Fitting – Interpolation:

Curve fitting: Method of least squares – straight line, fitting a parabola, fitting y= axn, y = aebx

type curves – Interpolation: Polynomial Interpolation – Lagrange polynomial – Newton

polynomial – Forward and Backward differences – Gregory Newton forward and backward

interpolation formula for equal intervals – Divided difference – properties of divided differences

– Newton’s divided differences formula – Lagrange’s interpolation formula for unequal interval.

2.1. Curve fitting:

 Several equations of different types can be obtained to express the given data

approximately. But the problem is to find the equation of the curve of “best fit” which may be

most suitable for predicting the unknown values. The process of finding such an equation of “best

fit” known as curve-fitting.

2.2. Method of Least Square:

 For clarity, suppose it is required to fit the curve y = a+bx+cx2 to a given set of

observations (x1, y1), (x2, y2) …. (x5, y5). For any x1, the observed value is yi and the expected

value is ƞi = a+ bxi+cx2
i so that the error еi = yi – ƞi

 ⸫ Thesum of the square of these errorsis

E = e1
2+e2

2+ ……e5
2

= [y1-(a+bx1 + cx1
2)]2 +[y2-bx2+cx2

2)]2 +…+ [y5-(a+bx5 +cx5
2)]2

For E to be minimum, we have

𝜕𝐸

𝜕𝑎
= 0 = −2[𝑦1 – (a + bx1 + cx1

2)]2 – 2[y2 – (a + bx2 + cx2
2)]-……- 2[y5 – (a + bx5 + cx5

2)]2

(1)

𝜕𝐸

𝜕𝑏
= 0 = -2x1[y1

 – (a + bx1 +cx1
2)] – 2x2 [y2 – (a + bx2 + cx2

2)] -…- 2[y5 – (a + bx5 + cx5
2)]

(2)

𝜕𝐸

𝜕𝑏
 = 0 = -2x1

2[y1 – (a + bx1 + cx1
2)] – 2x2

2[y2 – (a + bx2 + cx2
2)] -… -2x5

2[y5 – (a +bx5 +

cx5
2)](3)

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

 41 Numerical Methods and Programming in

C++

Equation (1) simplifies to

 y1 + y2 + … + y5 = 5a + b (x1 + x2 + … + x5) + c (x1
2 + x2

2 + … +x5
2)

 i.e, ∑𝑦𝑖 = 5𝑎 + 𝑏 ∑ 𝑥𝑖 + 𝑐𝑥𝑖2 (4)

Equation (2) becomes

 x1y1 + x2y2 +…+ x5y5 = a (x1 + x2 +…+ x5) + b (x1
2 + x2

2 +…+ x5
2) + c (x1

3 + x2
3 +…+ x5

3)

i.e., ∑𝑥iyi = a∑𝑥I + b∑𝑥i
2 + x∑𝑥i

3 (5)

Similarly (3) simplifies to

 ∑𝑥i
2yi = a∑𝑥i

2 +b ∑𝑥i
3 + c∑𝑥i

4 (6)

 The equations (4), (5) and (6) are known as normal equations and can be solved as

simultaneous equations in a,b,c . The values of these constants when substituted in (1) give the

desired curve of best it.

Working procedures:

(a) To fit the straight-line y = a+bx

(i)Substitute the observed set of n values in the equation.

(ii)Form normal equations for each constant, i.e., ∑𝑦 = na + b∑𝑥, ∑𝑥𝑦 = a∑𝑥 + b∑𝑥3

[The normal equation for the unknown a is obtained by multiplying the equation by the

coefficient a and adding. The normal equation by the coefficient of a and adding. The

normal equation for b is obtained by multiplying the equations by the coefficient of b (i.e.)

and adding.]

(iii) Solve these normal equations as simultaneous equation for a and b.

(iv) Substitute the values of and b in y = a+bx, which is the required line of best fit.

(b) To fit the parabola y = a+bx+cx2

(i) Form the normal equations ∑𝑦 = na + b∑𝑥 + c∑𝑥2

∑𝑥𝑦 = a∑𝑥 + b∑𝑥2 + c∑𝑥3 and ∑𝑥2y = a∑𝑥2 + b∑𝑥2 + c∑𝑥4

The normal equation for c has been obtained by multiplying the equations by the

coefficient of c (i.e., x2) and adding.

(ii) Solve these as simultaneous equations for a,b,c.

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

 42 Numerical Methods and Programming in

C++

(iii) Substitute the values of a,b,c in y = a+bx+cx2, which is the required parabola of

best fit.

(c) In general, the curve y = a+bx+cx2+…………+kxm-1 can be fitted to a given data by

erecting m normal equations.

EXAMPLE: 1

To find the linear law of the form 𝑃 = 𝑚𝑊 + 𝑐, we will use the given data to calculate the slope

𝑚 and intercept 𝑐 of the line. Then, we can use the equation to compute 𝑃 for 𝑊 = 150 kg.

Steps:

Given

𝑃 = [12,15,21,25], 𝑊 = [50,70,100,120]

𝑃 = 𝑚𝑊 + 𝑐

We calculate 𝑚 (the slope) using the formula:

𝑚 =
∑(𝑊𝑖 −𝑊

ˉ

) (𝑃𝑖 − 𝑃
ˉ

)

∑ (𝑊𝑖 −𝑊
ˉ

)
2

 where 𝑊
ˉ

 and 𝑃
ˉ

 are the mean values of 𝑊 and 𝑃, respectively.

Compute 𝑐:

Once 𝑚 is known, we can find 𝑐 using:

𝑐 = 𝑃
ˉ

−𝑚𝑊
ˉ

Calculate 𝑃 for 𝑊 = 150:

Substitute 𝑊 = 150 into 𝑃 = 𝑚𝑊 + 𝑐.

Let’s compute this step by step.

The linear law connecting 𝑃 and 𝑊 is:

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

 43 Numerical Methods and Programming in

C++

𝑃 = 0.188𝑊 + 2.276

For 𝑊 = 150 kg, the corresponding 𝑃 is:

𝑃 = 30.47 kg-wt (rounded to 2 decimal places).

EXAMPLE: 2

To fit a straight line of the form 𝑦 = 𝑚𝑥 + 𝑐 to the given data, we can use the least-squares

method. This involves calculating the slope 𝑚 and the intercept 𝑐. The formulas are:

𝑚 =
∑(𝑥𝑖 − 𝑥

ˉ
)(𝑦𝑖 − 𝑦

ˉ
)

∑(𝑥𝑖 − 𝑥
ˉ
)
2

𝑐 = 𝑦
ˉ
−𝑚𝑥

ˉ

Where:

 𝑥
ˉ
 and 𝑦

ˉ
 are the means of the 𝑥 and 𝑦 values, respectively.

Given data:

 𝑥 = [6,7,7,8,8,8,9,9,10]

 𝑦 = [5,5,4,5,4,3,4,3,3]

Let's compute the slope 𝑚, intercept 𝑐, and the equation of the line.

The equation of the straight line that best fits the given data is:

𝑦 = −0.5𝑥 + 8.0

Solution:

The problem involves deriving the equation of a straight line 𝑦 = 𝑎𝑥 + 𝑏 that fits the given data

using the method of normal equations.

Summary of the Solution:

Normal equations:

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

 44 Numerical Methods and Programming in

C++

o ∑𝑦 = 𝑎∑𝑥 + 9𝑏

o ∑𝑥𝑦 = 𝑎∑𝑥2 + 𝑏∑𝑥

Given values:

∑𝑥 = 72, ∑𝑦 = 36, ∑𝑥𝑦 = 282, ∑𝑥2 = 588

Substituting into the normal equations:

36 = 72𝑎 + 9𝑏 (divide through by 9 to simplify to) 8𝑎 + 𝑏 = 4 (equation 1)

282 = 588𝑎 + 72𝑏 (divide through by 6 to simplify to) 98𝑎 + 12𝑏 = 47 (equation 2)

Solving equations (1) and (2):

o Multiply equation (1) by 12: 96𝑎 + 12𝑏 = 48

o Subtract this from equation (2): 98𝑎 + 12𝑏 − 96𝑎 − 12𝑏 = 47 − 48, yielding

2𝑎 = −1, so 𝑎 = −0.5.

 Substituting 𝑎 = −0.5 into equation (1):

8(−0.5) + 𝑏 = 4  ⇒ −4 + 𝑏 = 4  ⇒ 𝑏 = 8

𝑦 = −0.5𝑥 + 8

This matches the result derived earlier, confirming that the line of best fit is indeed 𝑦 = −0.5𝑥 +

8.

EXAMPLE: 3

To fit a second-degree parabola of the form 𝑦 = 𝑎 + 𝑏𝑥 + 𝑐𝑥2 to the given data:

Data:

𝑥 = [0,1,2,3,4], 𝑦 = [1,1.8,1.3,2,6.3]

Transformation:

We set:

𝑢 = 𝑥 − 2 and 𝑣 = 𝑦

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

 45 Numerical Methods and Programming in

C++

This transforms the parabola 𝑦 = 𝑎 + 𝑏𝑥 + 𝑐𝑥2 into:

𝑣 = 𝐴 + 𝐵𝑢 + 𝐶𝑢2

Normal Equations:

Using the least-squares method, the normal equations for this transformed parabola are:

∑𝑣 = 𝐴∑1 + 𝐵∑𝑢 + 𝐶∑𝑢2

∑𝑢𝑣 = 𝐴∑𝑢 + 𝐵∑𝑢2 + 𝐶∑𝑢3

∑𝑢2𝑣 = 𝐴∑𝑢2 + 𝐵∑𝑢3 + 𝐶∑𝑢4

Compute 𝑢 = 𝑥 − 2, 𝑣 = 𝑦, and the required sums: ∑𝑢, ∑𝑢2, ∑𝑢3, ∑𝑢4, ∑𝑣, ∑𝑢𝑣, and ∑𝑢2𝑣.

Solve the resulting simultaneous equations for 𝐴, 𝐵, and 𝐶.

Substitute𝐴,𝐵, and 𝐶 back into the transformed parabola 𝑣 = 𝐴 + 𝐵𝑢 + 𝐶𝑢2.

Rewrite the equation in terms of 𝑥:

𝑦 = 𝐴 + 𝐵(𝑥 − 2) + 𝐶(𝑥 − 2)2.

Let’s compute this step by step.

The coefficients of the second-degree parabola are:

𝐴 = 1.31, 𝐵 = 1.08, 𝐶 = 0.59 (rounded to 2 decimal places)

The equation of the parabola in terms of 𝑥 is:

𝑦 = 0.59𝑥2 − 1.26𝑥 + 1.49

EXAMPLE 4

Fit a second-degree parabola to the following data:

x 1.0 1.5 2.0 2.5 3.0 3.5 4.0

y 1.1 1.3 1.6 2.0 2.7 3.4 4.1

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

 46 Numerical Methods and Programming in

C++

Explanation of the Solution:

o To simplify computations, the origin is shifted to(2.5,0), and the unit is changed

to 0.5. This transform 𝑥 to 𝑋 by the relation 𝑋 = 2𝑥 − 5.

o The parabola 𝑦 = 𝑎 + 𝑏𝑥 + 𝑐𝑥2 becomes 𝑦 = 𝐴 + 𝐵𝑋 + 𝐶𝑋2 after the

transformation

o The values of 𝑋, 𝑋𝑦, 𝑋2, 𝑋2𝑦, 𝑋3, and 𝑋4 are computed using the given 𝑥 and 𝑦.

o The totals are:

∑𝑋 = 0, ∑𝑋2 = 28, ∑𝑋3 = 0, ∑𝑋4 = 196,

∑𝑦 = 16.2, ∑𝑋𝑦 = 14.3, ∑𝑋2𝑦 = 69.9.

 Using the least-squares method, the equations are:

7𝐴 + 28𝐶 = 16.2

28𝐴 + 196𝐶 = 69.9

o From7𝐴 + 28𝐶 = 16.2, substitute 𝐴 = 2.07 − 4𝐶 into 28𝐴 + 196𝐶 = 69.9 and

solve for𝐶, giving 𝐶 = 0.061.

o Substitute 𝐶 = 0.061 back to find 𝐴 = 2.07.

 The coefficients are:

𝐴 = 2.07, 𝐵 = 0.511, 𝐶 = 0.061

o In terms of 𝑋:

𝑦 = 2.07 + 0.511𝑋 + 0.061𝑋2

o Replacing 𝑋 = 2𝑥 − 5, the equation becomes:

𝑦 = 2.07 + 0.511(2𝑥 − 5) + 0.061(2𝑥 − 5)2

o Simplifying:

𝑦 = 1.04 − 0.198𝑥 + 0.244𝑥2

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

 47 Numerical Methods and Programming in

C++

The required parabola of best fit is:

𝑦 = 1.04 − 0.198𝑥 + 0.244𝑥2

EXAMPLE: 5

Fit a second-degree parabola to the following data:

x: 1989 1990 1991 1992 1993 1994 1995 1996 1997

y: 352 356 357 358 360 361 361 360 35

Solution

The given problem fits a second-degree parabola of the form 𝑦 = 𝑎 + 𝑏𝑥 + 𝑐𝑥2 to the data using

transformations 𝑢 = 𝑥 − 1993 and 𝑣 = 𝑦 − 357. The steps to derive the equation are as follows:

The transformations are:

𝑢 = 𝑥 − 1993, 𝑣 = 𝑦 − 357

This simplifies the computations by shifting the origin to (1993,357).

Using the given data:

∑𝑢 = 0, ∑𝑢2 = 60, ∑𝑢3 = 0, ∑𝑢4 = 708,

∑𝑣 = 11, ∑𝑢𝑣 = 51, ∑𝑢2𝑣 = −9.

The parabola 𝑣 = 𝐴 + 𝐵𝑢 + 𝐶𝑢2 leads to the following normal equations

∑𝑢 = 0, ∑𝑢2 = 60, ∑𝑢3 = 0, ∑𝑢4 = 708,

∑𝑣 = 11, ∑𝑢𝑣 = 51, ∑𝑢2𝑣 = −9.

 From the first equation:

𝐴 =
11 − 60𝐶

9

 Substitute 𝐴 into the third equation:

60 (
11 − 60𝐶

9
) + 708𝐶 = −9

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

 48 Numerical Methods and Programming in

C++

 Simplify:

660 − 400𝐶 + 708𝐶 = −81

 Substitute 𝐶 into 𝐴 =
11−60𝐶

9
:

𝐴 =
11 − 60(−2.405)

9
=
11 + 144.3

9
= 17.247

Thus:

𝐴 = 17.247, 𝐵 = 0.85, 𝐶 = −2.405

Transforming back to 𝑥 using 𝑢 = 𝑥 − 1993:

𝑣 = 17.247+ 0.85𝑢 − 2.405𝑢2

𝑦 − 357 = 17.247 + 0.85(𝑥 − 1993) − 2.405(𝑥 − 1993)2

Expand and simplify:

𝑦 = 0.85𝑥 − 1694.05 − 2.405𝑥2 + 1065.52𝑥 − 1061792.32

Combine terms:

𝑦 = −2.405𝑥2 + 1066.37𝑥 − 1065186.37

The required parabola of best fit is:

𝑦 = −2.405𝑥2 + 1066.37𝑥 − 1065186.37

This section describes methods for fitting nonlinear curves by transforming them into

linear equations using logarithmic transformations. Below is a summary of the fitting

approaches for these three types of curves:

1. Curve: 𝒚 = 𝒂𝒙𝒃

 Transformation: Take the logarithm of both sides:

log10𝑦 = log10𝑎 + 𝑏log10𝑥

 Let:

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

 49 Numerical Methods and Programming in

C++

𝑋 = log10𝑥, 𝑌 = log10𝑦, 𝐴 = log10𝑎

 The equation becomes:

𝑌 = 𝐴 + 𝑏𝑋

 Normal equations:

∑𝑌 = 𝑛𝐴 + 𝑏∑𝑋, ∑𝑋𝑌 = 𝐴∑𝑋 + 𝑏∑𝑋2

 Solve for 𝐴 and 𝑏, and calculate 𝑎 using 𝐴 = log10𝑎, so 𝑎 = 10𝐴.

2. Curve: 𝑦 = 𝑎𝑒𝑏𝑥 (Exponential Curve)

 Transformation: Take the logarithm of both sides:

log10𝑦 = log10𝑎 + 𝑏𝑥log10𝑒

 Let:

𝑌 = log10𝑦, 𝐴 = log10𝑎, 𝐵 = 𝑏log10𝑒

 The equation becomes:

𝑌 = 𝐴 + 𝐵𝑥

 Normal equations:

∑𝑌 = 𝑛𝐴 + 𝐵∑𝑥, ∑𝑥𝑌 = 𝐴∑𝑥 + 𝐵∑𝑥2

 Solve for 𝐴 and 𝐵, and calculate 𝑎 and 𝑏:

𝑎 = 10𝐴, 𝑏 =
𝐵

log10𝑒

3. Curve: 𝑥𝑎𝑦 = 𝑏 (Gas Equation, e.g., 𝑝𝑣𝛾 = 𝑘)

 Transformation: Take the logarithm of both sides:

log10𝑥 + 𝑎log10𝑦 = log10𝑏

 Rearrange:

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

 50 Numerical Methods and Programming in

C++

log10𝑥

𝑎
+ log10𝑦 =

log10𝑏

𝑎

 Let:

𝑋 = log10𝑥, 𝑌 = log10𝑦, 𝐴 =
log10𝑏

𝑎
, 𝐵 = −

1

𝑎

 The equation becomes:

𝑌 = 𝐴 + 𝐵𝑋

 Normal equations:

∑𝑌 = 𝑛𝐴 + 𝐵∑𝑋, ∑𝑋𝑌 = 𝐴∑𝑋 + 𝐵∑𝑋2

 Solve for 𝐴 and 𝐵, and calculate 𝑎 and 𝑏:

𝑎 = −
1

𝐵
, 𝑏 = 10𝑎𝐴

This systematic approach simplifies fitting complex curves to real-world data. Let me know if

you'd like help solving specific examples or visualizing these fits!

EXAMPLE: 6

An experiment gave the following values:

 v (ft/min): 350 400 50 600

 t (min): 61 26 7 2.6

To solve for the best values of 𝑎 and 𝑏 in the equation 𝑣 = 𝑎𝑡𝑏, we can use the method of

logarithmic transformations. Here's a step-by-step solution:

Given:

We know the relationship between 𝑣 (velocity) and 𝑡 (time) is 𝑣 = 𝑎𝑡𝑏. We are asked to find the

values of 𝑎 and 𝑏.

The given data is:

 𝑣 (ft/min): 350, 400, 500, 600

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

 51 Numerical Methods and Programming in

C++

 𝑡 (min): 61, 26, 7, 2.6

Take the logarithm of both sides of the equation 𝑣 = 𝑎𝑡𝑏 to linearize the equation:

log10𝑣 = log10𝑎 + 𝑏log10𝑡

Let:

 𝑋 = log10𝑡

 𝑌 = log10𝑣

 𝐴 = log10𝑎

The equation becomes:

𝑌 = 𝐴 + 𝑏𝑋

This is now a linear equation in 𝑋 and 𝑌. We can solve for 𝐴 and 𝑏 using the normal equations.

From the transformed equation, the normal equations are:

∑𝑌 = 4𝐴 + 𝑏∑𝑋 (i)

∑𝑋𝑌 = 𝐴∑𝑋 + 𝑏∑𝑋2 (ii)

Using the given data, calculate the following values:

𝑣 𝑡 𝑋 = log10𝑡 𝑌 = log10𝑣 𝑋𝑌 𝑋2

350 61 1.7853 2.5441 4.542 3.187

400 26 1.4150 2.6021 3.682 2.002

500 7 0.8451 2.6990 2.281 0.714

600 2.6 0.4150 2.7782 1.153 0.172

Total 4.4604 10.6234 11.658 6.075

Now substitute the summation values into the normal equations.

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

 52 Numerical Methods and Programming in

C++

1. From equation (i):

4𝐴 + 𝑏 ⋅ 4.46 = 10.623

2. From equation (ii):

4.46𝐴 + 𝑏 ⋅ 6.075 = 11.658

These give us the system of equations:

4𝐴 + 4.46𝑏 = 10.623 (1)

4.46𝐴 + 6.075𝑏 = 11.658 (2)

Solve the system of equations (1) and (2) to find 𝐴 and 𝑏.

 Multiply equation (1) by 4.46 to eliminate 𝐴:

(4)(4.46)𝐴 + (4.46)(4.46)𝑏 = 10.623(4.46)

17.84𝐴 + 19.91𝑏 = 47.43 (3)

 Subtract equation (2) from equation (3) to solve for 𝑏:

17.84𝐴 + 19.91𝑏 − (4.46𝐴 + 6.075𝑏) = 47.43 − 11.658

13.38𝐴 + 13.835𝑏 = 35.772

Solve this to find:

𝐴 = 2.845, 𝑏 = −0.1697

We know that:

𝐴 = log10𝑎

So:

𝑎 = 10𝐴 = 102.845 = 699.8

Thus, the best possible values of 𝑎 and 𝑏 are:

𝑎 ≈ 699.8, 𝑏 ≈ −0.1697

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

 53 Numerical Methods and Programming in

C++

𝑣 = 699.8𝑡−0.1697

EXAMPLE: 7

Predict the mean radiation dose at an altitude of 3000 feet by fitting an exponential curve to the

given data:

 Altitude (x): 50 450 780 1200 4400 4800 5300

Dose of radiation (y): 28 30 32 36 51 58 69

To predict the mean radiation dose at an altitude of 3000 feet by fitting an exponential curve to

the given data, we can proceed with the following steps:

Given Data:

 Altitude 𝑥: 50, 450, 780, 1200, 4400, 4800, 5300

 Dose of radiation 𝑦: 28, 30, 32, 36, 51, 58, 69

We are given that the relationship between radiation dose 𝑦 and altitude 𝑥 follows an exponential

curve:

𝑦 = 𝑎𝑏𝑥

Taking the logarithm of both sides, we get:

log10𝑦 = log10𝑎 + 𝑥log10𝑏

Let:

 𝑌 = log10𝑦

 𝐴 = log10𝑎

 𝐵 = log10𝑏

This transforms the equation into a linear form:

𝑌 = 𝐴 + 𝐵𝑥

The normal equations for the linearized form are:

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

 54 Numerical Methods and Programming in

C++

∑𝑌 = 7𝐴 + 𝐵∑𝑥 (i)

∑𝑥𝑌 = 𝐴∑𝑥 + 𝐵∑𝑥2 (ii)

𝑥 𝑦 𝑌 = log10𝑦 𝑥𝑌 𝑥2

50 28 1.447158 72.3579 2500

450 30 1.477121 664.7044 202500

780 32 1.505150 1174.0170 608400

1200 36 1.556303 1867.5636 1440000

4400 51 1.707570 7513.3080 19360000

4800 58 1.763428 8464.4544 23040000

5300 69 1.838849 9745.8997 28090000

Total 11.295579 29502.305 72743400

Substitute the summation values into the normal equations:

From equation (i):

11.295579 = 7𝐴 + 16980𝐵

From equation (ii):

29502.305 = 16980𝐴 + 72743400𝐵

We now solve the system of two linear equations:

11.295579 = 7𝐴 + 16980𝐵

29502.305 = 16980𝐴 + 72743400𝐵

Using standard methods (e.g., substitution or matrix methods), we solve for 𝐴 and 𝐵:

 𝐴 = 1.4521015

 𝐵 = 0.0000666289

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

 55 Numerical Methods and Programming in

C++

Now, we can use the values of 𝐴 and 𝐵 to predict the radiation dose at an altitude of 3000 feet.

From the equation 𝑌 = 𝐴 + 𝐵𝑥, we have:

𝑌 = 1.4521015 + 0.0000666289 × 3000

𝑌 = 1.4521015 + 0.1998867 = 1.6519882

Now, take the antilog to find 𝑦:

𝑦 = 101.6519882 ≈ 44.874

Thus, the predicted mean radiation dose at an altitude of 3000 feet is approximately 44.9 units.

EXAMPLE: 8

Fit a curve of the form y aebx to the following data:

x: 0 1 2 3

 y: 1.05 2.10 3.85 8.30

To fit a curve of the form 𝑦 = 𝑎𝑒𝑏𝑥 to the given data, we can proceed with the following steps:

Given Data:

 𝑥: 0, 1, 2, 3

 𝑦: 1.05, 2.10, 3.85, 8.30

We are given the equation 𝑦 = 𝑎𝑒𝑏𝑥 . Taking the logarithm of both sides:

log10𝑦 = log10𝑎 + 𝑏𝑥log10𝑒

Since log10𝑒 is a constant, we rewrite the equation as:

𝑌 = 𝐴 + 𝐵𝑥

Where:

 𝑌 = log10𝑦

 𝐴 = log10𝑎

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

 56 Numerical Methods and Programming in

C++

 𝐵 = 𝑏log10𝑒

This transforms the equation into a linear form.

The normal equations for the linearized form are:

∑𝑌 = 4𝐴 + 𝐵∑𝑥 (i)

∑𝑥𝑌 = 𝐴∑𝑥 + 𝐵∑𝑥2 (ii)

𝑥 𝑦 𝑌 = log10𝑦 𝑥2 𝑥𝑌

0 1.05 0.0212 0 0

1 2.10 0.3222 1 0.3222

2 3.85 0.5855 4 1.1710

3 8.30 0.9191 9 2.7573

Total 1.8480 14 4.2505

Now, we can substitute these summations into the normal equations.

From equation (i):

∑𝑌 = 4𝐴 + 𝐵∑𝑥  ⇒  1.8480 = 4𝐴 + 6𝐵

From equation (ii):

∑𝑥𝑌 = 𝐴∑𝑥 + 𝐵∑𝑥2 ⇒ 4.2505 = 6𝐴 + 14𝐵

So we have the system of linear equations:

2. 4𝐴 + 6𝐵 = 1.8480

3. 6𝐴 + 14𝐵 = 4.2505

We can solve this system of equations using substitution or matrix methods. After solving, we

get:

 𝐴 = 0.0185

 𝐵 = 0.2956

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

 57 Numerical Methods and Programming in

C++

From the equation 𝐴 = log10𝑎, we can calculate 𝑎:

𝑎 = 10𝐴 = 100.0185 = 1.0186

From 𝐵 = 𝑏log10𝑒, we calculate 𝑏 as:

𝑏 =
𝐵

log10𝑒
=
0.2956

log10𝑒
= 0.6806

Thus, the curve of best fit is:

𝑦 = 1.0186𝑒0.6806𝑥

This is the required exponential curve that best fits the given data.

EXAMPLE: 9

The pressure and volume of a gas are related by the equation pV k, and k being constants.

Fit this equation to the following set of observations:

 p (kg/cm2): 0.5 1.0 1.5 2.0 2.5 3.0

 V (litres): 1.62 1.00 0.75 0.62 0.52 0.46

To fit the equation 𝑝𝑉𝛾 = 𝑘 to the given data, we can follow these steps:

Given Data:

 Pressure 𝑝 (kg/cm²): 0.5, 1.0, 1.5, 2.0, 2.5, 3.0

 Volume 𝑉 (litres): 1.62, 1.00, 0.75, 0.62, 0.52, 0.46

The equation 𝑝𝑉𝛾 = 𝑘 can be transformed by taking logarithms:

log10𝑝 + 𝛾log10𝑉 = log10𝑘

Let:

 𝑋 = log10𝑉

 𝑌 = log10𝑝

 𝐴 = log10𝑘

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

 58 Numerical Methods and Programming in

C++

Thus, the equation becomes:

𝑌 = 𝐴 + 𝐵𝑋

Where 𝐵 = 𝛾.

The normal equations for the linearized form are:

∑𝑌 = 6𝐴 + 𝐵∑𝑋 (i)

∑𝑋𝑌 = 𝐴∑𝑋 + 𝐵∑𝑋2 (ii)

𝑝 𝑉 𝑋 = log10𝑝 𝑌 = log10𝑉 𝑋𝑌 𝑋2

0.5 1.62 -0.3010 0.2095 -0.0630 0.0906

1.0 1.00 0.0000 0.0000 -0.0000 0.0000

1.5 0.75 0.1761 -0.1249 -0.0220 0.0310

2.0 0.62 0.3010 -0.2076 -0.0625 0.0906

2.5 0.52 0.3979 -0.2840 -0.1130 0.1583

3.0 0.46 0.4771 -0.3372 -0.1609 0.2276

Total 1.0511 -0.7442 -0.4214 0.5981

From equation (i):

∑𝑌 = 6𝐴 + 𝐵∑𝑋  ⇒ −0.7442 = 6𝐴 + 1.0511𝐵

From equation (ii):

∑𝑋𝑌 = 𝐴∑𝑋 + 𝐵∑𝑋2 ⇒ −0.4214 = 1.0511𝐴 + 0.5981𝐵

Thus, we have the system of equations:

6𝐴 + 1.0511𝐵 = −0.7442

1.0511𝐴 + 0.5981𝐵 = −0.4214

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

 59 Numerical Methods and Programming in

C++

Solving the system of equations, we find:

 𝐴 = 0.0132

 𝐵 = −0.7836

From 𝐴 = log10𝑘, we can calculate 𝑘 as:

𝑘 = 10𝐴 = 100.0132 = 1.039

Also, from 𝐵 = 𝛾, we can calculate 𝛾 as:

𝛾 = −
1

𝐵
=

1

0.7836
= 1.276

Thus, the equation of best fit is:

𝑝𝑉1.276 = 1.039

INTERPOLATION:

Introduction to Interpolation

Interpolation is a technique used to estimate the value of a function 𝑓(𝑥) for an intermediate

value of 𝑥 (denoted as 𝑥𝑖) based on a set of known values of 𝑥 and the corresponding values of

𝑓(𝑥). The general setup is as follows:

 Given Data:

o 𝑥: 𝑥0, 𝑥1, 𝑥2, … , 𝑥𝑛

o 𝑦: 𝑦0, 𝑦1, 𝑦2, … , 𝑦𝑛

Here, 𝑦𝑖 = 𝑓(𝑥𝑖), where 𝑥𝑖 represents the known values of the independent variable, and 𝑦𝑖 are

the corresponding values of the dependent variable (function values).

 Interpolation vs. Extrapolation:

o Interpolation: Estimating the value of 𝑓(𝑥) for an 𝑥𝑖 that lies between the given

𝑥0 and 𝑥𝑛 (i.e., within the range of the given data).

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

 60 Numerical Methods and Programming in

C++

o Extrapolation: Estimating the value of 𝑓(𝑥) for an 𝑥𝑖 that lies outside the given

range (beyond 𝑥0 and 𝑥𝑛).

In practice, interpolation includes both interpolation within the data range and extrapolation

outside the range, though often, when people refer to interpolation, they mean only the former.

When the Function is Unknown

In most practical scenarios, the exact form of the function 𝑓(𝑥) is not known, but only a set of

discrete values of the function at given points. In such cases, we aim to find a simpler function

𝜙(𝑥) (the interpolating function) that matches the values of 𝑓(𝑥) at the given points. The

purpose of the interpolating function is to provide estimates for values of 𝑓(𝑥) at other points,

especially for intermediate values of 𝑥.

 If 𝜙(𝑥) is a polynomial, it is called an interpolating polynomial.

 If 𝜙(𝑥) is a finite trigonometric series, we have trigonometric interpolation.

This study focuses on polynomial interpolation.

The Role of Finite Differences

Polynomial interpolation often involves the use of finite differences. These are crucial tools in

deriving formulas that estimate the unknown function based on the known data. Specifically,

forward differences and backward differences are used to compute the interpolating

polynomial, which provides an approximation of the function 𝑓(𝑥) at any given 𝑥 within the data

range.

Key Interpolation Formulas

To build the interpolating polynomial, we can derive two important formulas:

4. Forward Difference Formula

5. Backward Difference Formula

These formulas use the concept of finite differences to express the function values at intermediate

points. They are particularly useful in practical engineering and scientific investigations, where

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

 61 Numerical Methods and Programming in

C++

data might be given as discrete points and the goal is to estimate the function's behavior between

those points.

Next steps involve deriving these formulas, which will help us estimate the interpolating

polynomial from the given data.

Polynomial Interpolation

Polynomial interpolation is the process of finding a polynomial that exactly passes through a

given set of data points. When you have a set of data points (𝑥0, 𝑦0), (𝑥1, 𝑦1), … , (𝑥𝑛 , 𝑦𝑛), the

goal of polynomial interpolation is to find a polynomial 𝑃(𝑥) such that:

𝑃(𝑥𝑖) = 𝑦𝑖 for all 𝑖 = 0,1,… , 𝑛

The degree of the interpolating polynomial is at most 𝑛 because a polynomial of degree 𝑛 can

uniquely fit 𝑛 + 1 data points.

1. Lagrange Interpolation

The Lagrange interpolating polynomial is one of the simplest and most widely used methods

to perform polynomial interpolation. The formula for the Lagrange interpolating polynomial is:

𝑃(𝑥) =∑𝑦𝑖

𝑛

𝑖=0

𝐿𝑖(𝑥)

Where 𝐿𝑖(𝑥) are the Lagrange basis polynomials, given by:

𝐿𝑖(𝑥) = ∏
𝑥 − 𝑥𝑗
𝑥𝑖 − 𝑥𝑗

0≤𝑗≤𝑛
𝑗≠𝑖

 Each 𝐿𝑖(𝑥) is a polynomial that equals 1 when 𝑥 = 𝑥𝑖 and 0 at all other 𝑥𝑗 (where 𝑗 ≠ 𝑖).

 The polynomial 𝑃(𝑥) is a weighted sum of these basis polynomials, weighted by the

corresponding 𝑦𝑖 .

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

 62 Numerical Methods and Programming in

C++

Steps for Lagrange Interpolation:

6. Compute the Lagrange basis polynomials: For each 𝑖, compute the corresponding

𝐿𝑖(𝑥).

7. Multiply each 𝐿𝑖(𝑥) by 𝑦𝑖 : Multiply the computed basis polynomial by the function value

at the corresponding point.

8. Sum the terms: Add all the terms to get the final interpolating polynomial 𝑃(𝑥).

Example: 10

Given the data points:

(𝑥0, 𝑦0) = (0,1), (𝑥1, 𝑦1) = (1,2), (𝑥2, 𝑦2) = (2,4)

The Lagrange interpolating polynomial is:

𝐿0(𝑥) =
(𝑥 − 1)(𝑥 − 2)

(0 − 1)(0 − 2)
=
(𝑥 − 1)(𝑥 − 2)

2

𝐿1(𝑥) =
(𝑥 − 0)(𝑥 − 2)

(1 − 0)(1 − 2)
= −(𝑥)(𝑥 − 2)

𝐿2(𝑥) =
(𝑥 − 0)(𝑥 − 1)

(2 − 0)(2 − 1)
=
(𝑥)(𝑥 − 1)

2

The Lagrange polynomial becomes:

𝑃(𝑥) = 1 ⋅ 𝐿0(𝑥) + 2 ⋅ 𝐿1(𝑥) + 4 ⋅ 𝐿2(𝑥)

Substitute the expressions for 𝐿0(𝑥), 𝐿1(𝑥), and 𝐿2(𝑥), and simplify to get the interpolating

polynomial.

2. Newton’s Interpolation

Newton’s interpolation is another method for polynomial interpolation, and it is often used

because it allows the polynomial to be computed incrementally. The formula for the Newton

interpolating polynomial is:

𝑃(𝑥) = 𝑦0 + (𝑥 − 𝑥0) ⋅ 𝛥𝑦0 + (𝑥 − 𝑥0)(𝑥 − 𝑥1) ⋅ 𝛥
2𝑦0 +⋯

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

 63 Numerical Methods and Programming in

C++

Where 𝛥𝑘𝑦0 represents the 𝑘-th forward difference of the function values. The forward

differences are calculated iteratively and used to build the polynomial.

Forward Differences:

The first forward difference 𝛥𝑦0 is:

𝛥𝑦0 = 𝑦1 − 𝑦0

The second forward difference 𝛥2𝑦0 is:

𝛥2𝑦0 = 𝛥𝑦1 − 𝛥𝑦0

And so on, for higher-order differences. These differences are used to build the coefficients for

the Newton polynomial.

Steps for Newton Interpolation:

9. Compute the forward differences: Calculate the first, second, and higher-order forward

differences.

10. Build the polynomial incrementally: Start with the first data point 𝑦0, and add terms

involving the differences.

Example: 11

For the data points(0,1), (1,2), (2,4):

11. First forward differences:

𝛥𝑦0 = 2 − 1 = 1

𝛥𝑦1 = 4 − 2 = 2

3. Second forward difference:

𝛥2𝑦0 = 2 − 1 = 1

The Newton polynomial is:

𝑃(𝑥) = 𝑦0 + (𝑥 − 𝑥0)𝛥𝑦0 + (𝑥 − 𝑥0)(𝑥 − 𝑥1)𝛥
2𝑦0

Substitute the values and simplify to obtain the polynomial.

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

 64 Numerical Methods and Programming in

C++

3. Advantages of Newton’s Method over Lagrange Method:

 Incremental Computation: Newton’s method allows you to add new data points without

recalculating the entire polynomial. This makes it more efficient when new data points

are added.

 Simpler Computations for New Points: Once the differences are computed, adding new

points involves simple updates, rather than recalculating the entire polynomial as in

Lagrange interpolation.

4. Example Calculation

Let’s consider a practical example:

Given the following data:

𝑥0 = 0, 𝑥1 = 1, 𝑥2 = 2

𝑦0 = 1, 𝑦1 = 2, 𝑦2 = 4

First, compute the forward differences:

𝛥𝑦0 = 𝑦1 − 𝑦0 = 2− 1 = 1

𝛥𝑦1 = 𝑦2 − 𝑦1 = 4 − 2 = 2

𝛥2𝑦0 = 𝛥𝑦1 − 𝛥𝑦0 = 2 − 1 = 1

The Newton interpolating polynomial becomes:

𝑃(𝑥) = 𝑦0 + (𝑥 − 𝑥0)𝛥𝑦0 + (𝑥 − 𝑥0)(𝑥 − 𝑥1)𝛥
2𝑦0

𝑃(𝑥) = 1 + (𝑥 − 0)(1) + (𝑥 − 0)(𝑥 − 1)(1)

𝑃(𝑥) = 1 + 𝑥 + 𝑥(𝑥 − 1)

𝑃(𝑥) = 𝑥2

Thus, the interpolating polynomial is 𝑃(𝑥) = 𝑥2.

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

 65 Numerical Methods and Programming in

C++

Conclusion:

Polynomial interpolation is a powerful method for estimating the values of a function based on a

discrete set of data points. Both Lagrange and Newton interpolation provide ways to construct

a polynomial that fits the data. Lagrange interpolation gives an explicit formula for the

polynomial, while Newton's method allows incremental updates as new data points are added.

Newton’s Forward Interpolation Formula

Newton’s Forward Interpolation Formula is used for estimating the value of a function at a point

within a set of known data points when the data points are equally spaced. This method is

particularly useful for interpolation in numerical analysis when we have a function 𝑦 = 𝑓(𝑥) and

we are given a set of data points (𝑥0, 𝑦0), (𝑥1, 𝑦1),… , (𝑥𝑛, 𝑦𝑛), where the 𝑥-values are equispaced.

The goal is to estimate the value of 𝑦 at a given point 𝑥 = 𝑥0 + 𝑝ℎ, where ℎ is the spacing

between successive 𝑥-values and 𝑝 is a real number.

Derivation and Formula

12. Assumption: The values of 𝑥 are equally spaced, meaning:

𝑥𝑖 = 𝑥0 + 𝑖ℎ for 𝑖 = 0,1,2,… , 𝑛

 This implies the difference between any two consecutives 𝑥-values is ℎ.

13. Newton’s Forward Interpolation Formula: The general interpolation formula is

derived by using forward differences. For a given set of data points, the interpolation

polynomial 𝑦(𝑥) can be expressed as:

𝑦(𝑥) = 𝑦0 + (𝑥 − 𝑥0) ⋅ 𝛥𝑦0 +
(𝑥 − 𝑥0)(𝑥 − 𝑥1)

2!
⋅ 𝛥2𝑦0 +

(𝑥 − 𝑥0)(𝑥 − 𝑥1)(𝑥 − 𝑥2)

3!
⋅ 𝛥3𝑦0

+⋯

 where 𝛥𝑦0, 𝛥
2𝑦0, … are the forward differences of the function 𝑦 = 𝑓(𝑥) at 𝑥0.

 For any real number 𝑝, where 𝑥 = 𝑥0 + 𝑝ℎ, the interpolation formula is:

𝑦(𝑥) = 𝑦0 + 𝑝 ⋅ 𝛥𝑦0 +
𝑝(𝑝 − 1)

2!
⋅ 𝛥2𝑦0 +

𝑝(𝑝 − 1)(𝑝 − 2)

3!
⋅ 𝛥3𝑦0 +⋯

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

 66 Numerical Methods and Programming in

C++

 This is Newton’s forward interpolation formula.

14. Forward Differences: The forward differences 𝛥𝑦0, 𝛥
2𝑦0, … are calculated as follows:

𝛥𝑦0 = 𝑦1 − 𝑦0

𝛥2𝑦0 = 𝑦2 − 𝑦1 − 𝛥𝑦0

𝛥3𝑦0 = 𝑦3 − 𝑦2 − 𝛥
2𝑦0

 And so on, until 𝛥𝑛𝑦0.

15. Simplification for Real Numbers: If 𝑝 is any real number, the formula becomes:

𝑦(𝑥) = 𝑦0 + 𝑝 ⋅ 𝛥𝑦0 +
𝑝(𝑝 − 1)

2!
⋅ 𝛥2𝑦0 +

𝑝(𝑝 − 1)(𝑝 − 2)

3!
⋅ 𝛥3𝑦0 +⋯

 This equation is valid for both integer and non-integer values of 𝑝, making it versatile for

interpolation at intermediate points between the given data points.

16. Final Expression: The final formula, incorporating the forward differences, is as follows:

𝑦(𝑥) = 𝑦0 + 𝑝 ⋅ 𝛥𝑦0 +
𝑝(𝑝 − 1)

2!
⋅ 𝛥2𝑦0 +

𝑝(𝑝 − 1)(𝑝 − 2)

3!
⋅ 𝛥3𝑦0 +⋯

 This formula is useful for evaluating 𝑦 at any point 𝑥 = 𝑥0 + 𝑝ℎ, where the forward

differences are pre-calculated.

Example:12

Let’s consider an example where we are given the following data points:

𝑥0 = 0, 𝑥1 = 1, 𝑥2 = 2, 𝑥3 = 3

𝑦0 = 1, 𝑦1 = 2, 𝑦2 = 4, 𝑦3 = 8

We want to find the value of 𝑦 at 𝑥 = 1.5. In this case, ℎ = 1 and 𝑝 = 1.5.

Calculate the forward differences:

𝛥𝑦0 = 𝑦1 − 𝑦0 = 2− 1 = 1

𝛥2𝑦0 = 𝑦2 − 𝑦1 − 𝛥𝑦0 = 4 − 2− 1 = 1

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

 67 Numerical Methods and Programming in

C++

𝛥3𝑦0 = 𝑦3 − 𝑦2 − 𝛥
2𝑦0 = 8− 4 − 1 = 3

Apply the Newton’s Forward Interpolation Formula:

𝑦(1.5) = 𝑦0 + 𝑝 ⋅ 𝛥𝑦0 +
𝑝(𝑝 − 1)

2!
⋅ 𝛥2𝑦0 +

𝑝(𝑝 − 1)(𝑝 − 2)

3!
⋅ 𝛥3𝑦0

 Substituting the values:

𝑦(1.5) = 1 + 1.5 ⋅ 1 +
1.5(1.5 − 1)

2!
⋅ 1 +

1.5(1.5 − 1)(1.5 − 2)

3!
⋅ 3

 Simplifying:

𝑦(1.5) = 1 + 1.5 +
1.5 ⋅ 0.5

2
+
1.5 ⋅ 0.5 ⋅ −0.5

6
⋅ 3

𝑦(1.5) = 1 + 1.5 + 0.375 − 0.375 = 2.5

Thus, 𝑦(1.5) = 2.5.

Newton’s Backward Interpolation Formula

Newton’s Backward Interpolation Formula is used for estimating the value of a function at a

point that is beyond the given data points, specifically when the data points are evenly spaced. In

this case, the formula is applied when we wish to evaluate the function at a point 𝑥 = 𝑥𝑛 + 𝑝ℎ,

where ℎ is the step size and 𝑝 is a real number. This method uses backward differences, as opposed

to forward differences in the forward interpolation formula.

Derivation and Formula

Let’s assume the function 𝑦 = 𝑓(𝑥) takes values 𝑦0, 𝑦1, 𝑦2, … corresponding to the values of

𝑥0, 𝑥0 + ℎ, 𝑥0 + 2ℎ, …. Suppose we are required to evaluate 𝑓(𝑥) for 𝑥 = 𝑥𝑛 + 𝑝ℎ, where 𝑝 is any

real number.

In this case, the general formula for the interpolation is derived as follows:

Binomial Expansion: We use the binomial expansion for any real number 𝑝. The formula is

based on backward differences and can be written as:

𝑦(𝑥) = 𝑓(𝑥𝑛 + 𝑝ℎ) = 𝐸𝑝𝑓(𝑥𝑛) = (1 − ∇)−𝑝𝑦𝑛

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

 68 Numerical Methods and Programming in

C++

 where ∇ denotes the backward difference operator.

Backward Differences: The backward differences ∇𝑦𝑛 , ∇
2𝑦𝑛 , … are used to express the formula.

The backward differences are calculated as:

∇𝑦𝑛 = 𝑦𝑛 − 𝑦𝑛−1

∇2𝑦𝑛 = ∇𝑦𝑛 − ∇𝑦𝑛−1

∇3𝑦𝑛 = ∇
2𝑦𝑛 − ∇

2𝑦𝑛−1

 and so on.

Final Formula: Using the binomial expansion and backward differences, we get the following

formula for Newton’s Backward Interpolation:

𝑦(𝑥) = 𝑦𝑛 + 𝑝 ⋅ ∇𝑦𝑛 +
𝑝(𝑝 + 1)

2!
⋅ ∇2𝑦𝑛 +

𝑝(𝑝 + 1)(𝑝 + 2)

3!
⋅ ∇3𝑦𝑛 +⋯

General Form: In general, the Newton’s Backward Interpolation formula for 𝑦(𝑥) =

𝑓(𝑥𝑛 + 𝑝ℎ) is:

𝑦(𝑥) = 𝑦𝑛 + 𝑝 ⋅ ∇𝑦𝑛 +
𝑝(𝑝 + 1)

2!
⋅ ∇2𝑦𝑛 +

𝑝(𝑝 + 1)(𝑝 + 2)

3!
⋅ ∇3𝑦𝑛 +⋯

 This expression uses the backward differences ∇𝑦𝑛 , ∇
2𝑦𝑛 , ∇

3𝑦𝑛 , ….

Example: 13

Let’s consider an example with the following data points:

𝑥0 = 0, 𝑥1 = 1, 𝑥2 = 2, 𝑥3 = 3

𝑦0 = 1, 𝑦1 = 2, 𝑦2 = 4, 𝑦3 = 8

Suppose we want to find the value of 𝑦 at 𝑥 = 3.5 (i.e., 𝑝 = 0.5, since 𝑥 = 𝑥3 + 0.5ℎ and ℎ = 1).

Calculate the backward differences:

∇𝑦3 = 𝑦3 − 𝑦2 = 8 − 4 = 4

∇2𝑦3 = ∇𝑦3 − ∇𝑦2 = 4 − (𝑦2 − 𝑦1) = 4 − (4 − 2) = 2

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

 69 Numerical Methods and Programming in

C++

∇3𝑦3 = ∇
2𝑦3 − ∇

2𝑦2 = 2− (𝑦1 − 𝑦0) = 2 − (2 − 1) = 1

Apply the Newton’s Backward Interpolation Formula: Using the formula:

𝑦(3.5) = 𝑦3 + 𝑝 ⋅ ∇𝑦3 +
𝑝(𝑝 + 1)

2!
⋅ ∇2𝑦3 +

𝑝(𝑝 + 1)(𝑝 + 2)

3!
⋅ ∇3𝑦3

 Substituting the values 𝑝 = 0.5, ∇𝑦3 = 4, ∇2𝑦3 = 2, and ∇3𝑦3 = 1:

𝑦(3.5) = 8 + 0.5 ⋅ 4 +
0.5(0.5 + 1)

2!
⋅ 2 +

0.5(0.5 + 1)(0.5 + 2)

3!
⋅ 1

 Simplifying:

𝑦(3.5) = 8 + 2 +
0.5 ⋅ 1.5

2
⋅ 2 +

0.5 ⋅ 1.5 ⋅ 2.5

6

𝑦(3.5) = 8 + 2 + 0.75 + 0.3125 = 11.0625

Thus, 𝑦(3.5) = 11.0625.

EXAMPLE: 14

The table gives the distance in nautical miles of the visible horizon for the given heights in feet

above the earth’s surface:

x height: 100 150 200 250 300 350 400

 y distance: 10.63 13.03 15.04 16.81 18.42 19.90 21.27

Find the values of y when (i) x 160 ft. (ii) x 410.

Solution to the Problem Using Interpolation:

Given the table of heights and corresponding distances in nautical miles, we need to find the

values of 𝑦 for:

𝑥 = 160 feet (using Newton’s Forward Interpolation Formula).

𝑥 = 410 feet (using Newton’s Backward Interpolation Formula).

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

 70 Numerical Methods and Programming in

C++

The Given Table:

𝑥 (height) 𝑦 (distance) 𝛥𝑦 𝛥2𝑦 𝛥3𝑦 𝛥4𝑦

100 10.63
150 13.03 2.40
200 15.04 2.01 0.15
250 16.81 1.77 −0.07 0.08
300 18.42 1.61 −0.05 0.03
350 19.90 1.48 −0.01 0.02
400 21.27 1.37 0.02

Part (i): Finding 𝑦 when 𝑥 = 160 feet (using Newton’s Forward Interpolation Formula)

We are asked to find the value of 𝑦 when 𝑥 = 160 feet. Given that the values in the table are

spaced by ℎ = 50 feet, we calculate 𝑝 as:

𝑝 =
𝑥 − 𝑥0
ℎ

=
160 − 100

50
= 1.2

Thus, 𝑝 = 1.2.

We are also given the following values from the difference table for 𝑥0 = 100:

 𝑦0 = 13.03

 𝛥𝑦0 = 2.01

 𝛥2𝑦0 = −0.24

 𝛥3𝑦0 = 0.08

 𝛥4𝑦0 = −0.05

Using Newton's Forward Interpolation Formula:

𝑦(𝑥) = 𝑦0 + 𝑝 ⋅ 𝛥𝑦0 +
𝑝(𝑝 − 1)

2!
⋅ 𝛥2𝑦0 +

𝑝(𝑝 − 1)(𝑝 − 2)

3!
⋅ 𝛥3𝑦0 +

𝑝(𝑝 − 1)(𝑝 − 2)(𝑝 − 3)

4!

⋅ 𝛥4𝑦0

Substitute the values:

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

 71 Numerical Methods and Programming in

C++

𝑦(160) = 13.03 + 1.2 ⋅ 2.01 +
1.2(1.2 − 1)

2!
⋅ (−0.24) +

1.2(1.2 − 1)(1.2 − 2)

3!
⋅ 0.08

+
1.2(1.2 − 1)(1.2 − 2)(1.2 − 3)

4!
⋅ (−0.05)

Simplify each term:

𝑦(160) = 13.03 + 2.412 +
1.2 ⋅ 0.2

2
⋅ (−0.24) +

1.2 ⋅ 0.2 ⋅ (−0.8)

6
⋅ 0.08

+
1.2 ⋅ 0.2 ⋅ (−0.8) ⋅ (−1.8)

24
⋅ (−0.05)

𝑦(160) = 13.03 + 2.412 − 0.0288 + (−0.01728) + 0.00168

𝑦(160) = 13.03 + 2.412 − 0.0288 − 0.01728 + 0.00168 = 13.46 nautical miles

So, the value of 𝑦 when 𝑥 = 160 feet is 13.46 nautical miles.

Part (ii): Finding 𝑦 when 𝑥 = 410 feet (using Newton’s Backward Interpolation Formula)

We are asked to find the value of 𝑦 when 𝑥 = 410 feet. Since this value is near the end of the

table, we use Newton’s Backward Interpolation Formula.

First, we calculate 𝑝 for the backward interpolation:

𝑝 =
𝑥 − 𝑥𝑛
ℎ

=
410 − 400

50
= 0.2

Thus, 𝑝 = 0.2.

Now, using the backward difference values for 𝑥𝑛 = 400:

 𝑦𝑛 = 21.27

 ∇𝑦𝑛 = 1.37

 ∇2𝑦𝑛 = −0.11

 ∇3𝑦𝑛 = 0.02

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

 72 Numerical Methods and Programming in

C++

Using Newton's Backward Interpolation Formula:

𝑦(𝑥) = 𝑦𝑛 + 𝑝 ⋅ ∇𝑦𝑛 +
𝑝(𝑝 + 1)

2!
⋅ ∇2𝑦𝑛 +

𝑝(𝑝 + 1)(𝑝 + 2)

3!
⋅ ∇3𝑦𝑛

Substitute the values:

𝑦(410) = 21.27 + 0.2 ⋅ 1.37 +
0.2(0.2 + 1)

2!
⋅ (−0.11) +

0.2(0.2 + 1)(0.2 + 2)

3!
⋅ 0.02

Simplify each term:

𝑦(410) = 21.27 + 0.274 +
0.2 ⋅ 1.2

2
⋅ (−0.11) +

0.2 ⋅ 1.2 ⋅ 2.2

6
⋅ 0.02

𝑦(410) = 21.27 + 0.274 + (−0.0264) + 0.00176

𝑦(410) = 21.27 + 0.274 − 0.0264 + 0.00176 = 21.53 nautical miles

So, the value of 𝑦 when 𝑥 = 410 feet is 21.53 nautical miles.

Final Answers:

 (i) 𝑦 = 13.46 Nautical miles for 𝑥 = 160 feet.

 (ii) 𝑦 = 21.53 Nautical miles for 𝑥 = 410 feet.

EXAMPLE: 15

Problem: Estimating the Number of Students with Marks between 40 and 45

We are given a frequency table representing the marks and the number of students who obtained

those marks. The goal is to estimate the number of students who obtained marks between 40

and 45.

Given Data:

Marks No. of Students

30—40 31

40—50 42

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

 73 Numerical Methods and Programming in

C++

Marks No. of Students

50—60 51

60—70 35

70—80 31

We first prepare the cumulative frequency table, which gives the number of students who

obtained marks less than a certain value:

Marks less than (x) No. of students (yₓ)

40 31

50 73 (31 + 42)

60 124 (73 + 51)

70 159 (124 + 35)

80 190 (159 + 31)

Next, we construct the difference table from the cumulative frequency values:

x yₓ Δyₓ Δ²yₓ Δ³yₓ Δ⁴yₓ

40 31

50 73 42

60 124 51 9

70 159 35 -16 -25

80 190 31 -4 12 37

To estimate the number of students who obtained marks between 40 and 45, we need to find the

cumulative number of students with marks less than 45. Since 45 is between 40 and 50, we use

Newton’s Forward Interpolation Formula.

Given:

 𝑥0 = 40, 𝑥 = 45, ℎ = 10

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

 74 Numerical Methods and Programming in

C++

 𝑝 =
𝑥−𝑥0

ℎ
=

45−40

10
= 0.5

The formula:

𝑦(45) = 𝑦0 + 𝑝 ⋅ 𝛥𝑦0 +
𝑝(𝑝 − 1)

2!
⋅ 𝛥2𝑦0 +

𝑝(𝑝 − 1)(𝑝 − 2)

3!
⋅ 𝛥3𝑦0 +

𝑝(𝑝 − 1)(𝑝 − 2)(𝑝 − 3)

4!

⋅ 𝛥4𝑦0

Substitute the values from the difference table:

 𝑦0 = 31

 𝛥𝑦0 = 42

 𝛥2𝑦0 = 9

 𝛥3𝑦0 = −25

 𝛥4𝑦0 = 37

Calculation:

𝑦(45) = 31 + 0.5 ⋅ 42 +
0.5(0.5 − 1)

2!
⋅ 9 +

0.5(0.5 − 1)(0.5 − 2)

3!
⋅ (−25)

+
0.5(0.5 − 1)(0.5 − 2)(0.5 − 3)

4!
⋅ 37

Breaking this down step-by-step:

 First term: 31

 Second term: 0.5 ⋅ 42 = 21

 Third term:
0.5⋅−0.5

2
⋅ 9 = −1.125

 Fourth term:
0.5⋅−0.5⋅−1.5

6
⋅ (−25) = −1.5625

 Fifth term:
0.5⋅−0.5⋅−1.5⋅−2.5

24
⋅ 37 = −1.4453

Now, adding these values together:

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

 75 Numerical Methods and Programming in

C++

𝑦(45) = 31 + 21 − 1.125 − 1.5625 − 1.4453 = 47.87

The cumulative number of students with marks less than 45 is approximately 47.87, which we

round to 48.

Since the number of students with marks less than 40 is 31, the number of students with marks

between 40 and 45 is:

48 − 31 = 17

EXAMPLE: 16

To find the cubic polynomial that fits the given values and then evaluate 𝑓(4), we will follow a

structured approach using Newton's forward interpolation formula.

We are given the following data:

𝑥 0 1 2 3

𝑓(𝑥) 1 2 1 10

We now create the difference table by calculating the first, second, and third differences.

𝑥 𝑓(𝑥) 𝛥𝑓(𝑥) 𝛥2𝑓(𝑥) 𝛥3𝑓(𝑥)

0 1 1 -2 3

1 2 -1 -3 5

2 1 9 6

3 10

Newton’s forward interpolation formula is:

𝑓(𝑥) = 𝑓(𝑥0) + 𝑝𝛥𝑓(𝑥0) +
𝑝(𝑝 − 1)

2!
𝛥2𝑓(𝑥0) +

𝑝(𝑝 − 1)(𝑝 − 2)

3!
𝛥3𝑓(𝑥0)

where 𝑝 =
𝑥−𝑥0

ℎ
 and ℎ = 1.

For 𝑥 = 4, we take 𝑥0 = 0, 𝑝 =
4−0

1
= 4, and use the difference table values:

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

 76 Numerical Methods and Programming in

C++

 𝑓(𝑥0) = 1

 𝛥𝑓(𝑥0) = 1

 𝛥2𝑓(𝑥0) = −2

 𝛥3𝑓(𝑥0) = 3

Now substitute into the formula:

𝑓(4) = 𝑓(0) + 4𝛥𝑓(0) +
4(4 − 1)

2!
𝛥2𝑓(0) +

4(4 − 1)(4 − 2)

3!
𝛥3𝑓(0)

Simplify step by step:

𝑓(4) = 1 + 4 ⋅ 1 +
4 ⋅ 3

2
⋅ (−2) +

4 ⋅ 3 ⋅ 2

6
⋅ 3

𝑓(4) = 1 + 4 − 12 + 12

𝑓(4) = 5

Thus, 𝑓(4) = 5.

EXAMPLE:17

To construct the interpolating polynomial using Newton's backward difference formula for

the given data and then find 𝑓(−1/3), we will follow the procedure step-by-step.

Given Data:

We are provided with the following values:

𝑥 𝑓(𝑥)

-0.75 -0.0718125

-0.50 -0.02475

-0.25 0.3349375

0 1.10100

First, calculate the backward differences.

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

 77 Numerical Methods and Programming in

C++

𝑥 𝑦 𝛥𝑦 𝛥2𝑦 𝛥3𝑦

-0.75 -0.0718125 0.0470625 0.312625 0.3596875

-0.50 -0.02475 0.312625 0.400375 0.7660625

-0.25 0.3349375 0.400375 0.7660625

0 1.10100

The backward interpolation formula is given by:

𝑓(𝑥) = 𝑦𝑛 + 𝑝𝛥𝑦𝑛 +
𝑝(𝑝 + 1)

2!
𝛥2𝑦𝑛 +

𝑝(𝑝 + 1)(𝑝 + 2)

3!
𝛥3𝑦𝑛 +⋯

Where:

 𝑝 =
𝑥−𝑥𝑛

ℎ

 ℎ = 0.25 (the step size, since the difference between successive 𝑥-values is 0.25)

Step 3: Calculate 𝑝 for 𝑥 = −
1

3

We need to find 𝑓 (−
1

3
), so first calculate 𝑝 for this 𝑥:

𝑝 =
𝑥 − 𝑥𝑛
ℎ

=
−
1
3 − 0

0.25
= −

1

3
×

1

0.25
= −

1

3
× 4 = −

4

3

Thus, 𝑝 = −
4

3
.

Now, we apply Newton’s backward interpolation formula. The values we will use are:

 𝑦𝑛 = 1.10100

 𝛥𝑦𝑛 = 0.7660625

 𝛥2𝑦𝑛 = 0.400375

 𝛥3𝑦𝑛 = 0.312625

Substitute these into the formula for 𝑓(𝑥):

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

 78 Numerical Methods and Programming in

C++

𝑓 (−
1

3
) = 1.10100 + (−

4

3
) ⋅ 0.7660625 +

(−
4
3)(−

4
3 + 1)

2!
⋅ 0.400375

+
(−

4
3)(−

4
3 + 1)(−

4
3 + 2)

3!
⋅ 0.312625

Now, simplify each term:

First term: 1.10100

Second term:

(−
4

3
) ⋅ 0.7660625 = −1.02141667

3. Third term:

(−
4
3) (−

4
3 + 1)

2!
⋅ 0.400375 =

(−
4
3) (−

1
3)

2
⋅ 0.400375 =

4

9
⋅ 0.400375 = 0.178444

4. Fourth term:

(−
4
3) (−

4
3 + 1) (−

4
3 + 2)

3!
⋅ 0.312625 =

(−
4
3) (−

1
3) (

2
3)

6
⋅ 0.312625 = −0.0611

Now add up all the terms:

𝑓 (−
1

3
) = 1.10100 − 1.02141667 + 0.178444 − 0.0611 = 0.19692733

Thus, 𝑓 (−
1

3
) ≈ 0.197.

EXAMPLE:18

Let's walk through the problem step by step using Newton's interpolation formula to find the

first and tenth terms of the series.

Given Data:

We are given the values of 𝑦 for consecutive terms of a series. The 6𝑡ℎ term is 23.6, and we need

to find the 1st and 10th terms.

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

 79 Numerical Methods and Programming in

C++

𝑥 𝑦

3 4.8

4 8.4

5 14.5

6 23.6

7 36.2

8 52.8

9 73.9

We also need to construct the difference table to apply Newton's forward and backward

interpolation.

The first step is to calculate the first, second, third, and fourth differences. Let's go through them:

𝑥 𝑦 𝛥𝑦 𝛥2𝑦 𝛥3𝑦 𝛥4𝑦

3 4.8 3.6 2.5 0.5 0.0

4 8.4 2.5 6.1 0.5

5 14.5 3.0 9.1 0.5

6 23.6 3.5 12.6 0.5

7 36.2 4.0 16.6 0.5

8 52.8 4.5 21.1

9 73.9

To find the first term (𝑥 = 1), we use Newton's Forward Interpolation Formula. The formula

is:

𝑦1 = 𝑦3 + 𝑝𝛥𝑦3 +
𝑝(𝑝 − 1)

2!
𝛥2𝑦3 +

𝑝(𝑝 − 1)(𝑝 − 2)

3!
𝛥3𝑦3 +⋯

Where:

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

 80 Numerical Methods and Programming in

C++

 𝑝 =
𝑥−𝑥0

ℎ
=

1−3

1
= −2

 𝑥0 = 3 (the point corresponding to the 6th term, where 𝑦3 = 23.6)

 ℎ = 1

Using the first few values from the difference table:

 𝑦0 = 4.8

 𝛥𝑦0 = 3.6

 𝛥2𝑦0 = 2.5

 𝛥3𝑦0 = 0.5

Now, using the formula:

𝑦1 = 4.8 + (−2)(3.6) +
(−2)(−3)

2!
(2.5) +

(−2)(−3)(−4)

3!
(0.5)

Simplify each term:

4.8

(−2)(3.6) = −7.2

(−2)(−3)

2
⋅ 2.5 = 3 ⋅ 2.5 = 7.5

(−2)(−3)(−4)

6
⋅ 0.5 = −4 ⋅ 0.5 = −2

Now, add these terms together:

𝑦1 = 4.8 − 7.2 + 7.5 − 2 = 3.1

Thus, the first term is 3.1.

Now, to find the tenth term (𝑥 = 10), we use Newton's Backward Interpolation Formula.

The formula is:

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

 81 Numerical Methods and Programming in

C++

𝑦10 = 𝑦9 + 𝑝𝛥𝑦9 +
𝑝(𝑝 + 1)

2!
𝛥2𝑦9 +

𝑝(𝑝 + 1)(𝑝 + 2)

3!
𝛥3𝑦9 +⋯

Where:

 𝑝 =
𝑥−𝑥𝑛

ℎ
=

10−9

1
= 1

 𝑥𝑛 = 9 (the last point in the table)

Using the values from the difference table:

 𝑦9 = 73.9

 𝛥𝑦9 = 21.1

 𝛥2𝑦9 = 4.5

 𝛥3𝑦9 = 0.5

Now, using the formula:

𝑦10 = 73.9 + (1)(21.1) +
(1)(2)

2!
(4.5) +

(1)(2)(3)

3!
(0.5)

Simplify each term:

73.9

(1)(21.1) = 21.1

(1)(2)

2
⋅ 4.5 = 4.5

(1)(2)(3)

6
⋅ 0.5 = 0.5

Now, add these terms together:

𝑦10 = 73.9 + 21.1 + 4.5 + 0.5 = 100

Thus, the tenth term is 100.

 The first term is 3.1.

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

 82 Numerical Methods and Programming in

C++

 The tenth term is 100.

EXAMPLE: 19

To demonstrate Newton’s forward interpolation formula and derive the given series sum, let's

break down the solution and clarify the steps.

Newton’s Forward Interpolation Formula:

The formula for Newton’s forward interpolation is:

𝑓(𝑥) = 𝑓(𝑥0) + 𝑝𝛥𝑓(𝑥0) +
𝑝(𝑝 − 1)

2!
𝛥2𝑓(𝑥0) +

𝑝(𝑝 − 1)(𝑝 − 2)

3!
𝛥3𝑓(𝑥0) +⋯

Where:

 𝑝 =
𝑥−𝑥0

ℎ
, where ℎ is the step size (difference between consecutive 𝑥-values),

 𝛥𝑓(𝑥0), 𝛥
2𝑓(𝑥0),… are the first, second, third, etc., differences.

We are trying to show the sum for a given series using the interpolation method.

Given Data:

The series sum is of the form:

𝑠𝑛 = 𝑠1 +∑𝛥

𝑛

𝑘=1

𝑠𝑘

Where:

 𝑠1 is the first term,

 𝛥𝑠1, 𝛥𝑠2, … are the forward differences.

We also know that for a series of data, the differences follow:

 𝑠1 = 1,

 𝛥𝑠1 = 8,

 𝛥2𝑠1 = 19,

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

 83 Numerical Methods and Programming in

C++

 𝛥3𝑠1 = 18,

 𝛥4𝑠1 = 6.

To express 𝑠𝑛 using the forward differences, the formula becomes:

𝑠𝑛 = 𝑠1 + 𝛥𝑠1 +
𝑝(𝑝 − 1)

2!
𝛥2𝑠1 +

𝑝(𝑝 − 1)(𝑝 − 2)

3!
𝛥3𝑠1 +

𝑝(𝑝 − 1)(𝑝 − 2)(𝑝 − 3)

4!
𝛥4𝑠1

Step 2: Use the Given Differences

For 𝑠1 = 1, and the given differences:

 𝛥𝑠1 = 8,

 𝛥2𝑠1 = 19,

 𝛥3𝑠1 = 18,

 𝛥4𝑠1 = 6,

Substitute these into the formula:

𝑠𝑛 = 1 + 8 +
𝑝(𝑝 − 1)

2
⋅ 19 +

𝑝(𝑝 − 1)(𝑝 − 2)

6
⋅ 18 +

𝑝(𝑝 − 1)(𝑝 − 2)(𝑝 − 3)

24
⋅ 6

To find specific values of 𝑠𝑛, substitute values for 𝑝. For example, for 𝑝 = 1 (when 𝑥 = 𝑥0):

𝑠1 = 1+ 8 +
(1)(1 − 1)

2
⋅ 19 +

(1)(1 − 1)(1 − 2)

6
⋅ 18 +

(1)(1 − 1)(1 − 2)(1 − 3)

24
⋅ 6

Since the higher-order terms involving 𝑝 will vanish, we get:

𝑠1 = 1 + 8 = 9

Next, for 𝑝 = 2 (for the second term), the second-order differences will come into play. The

process continues similarly for higher-order terms.

Using the Newton’s forward interpolation formula, we can compute the values of the series and

find the desired terms 𝑠𝑛, as shown in the solution steps.

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

 84 Numerical Methods and Programming in

C++

This method is powerful because it allows for the computation of interpolated values based on

the differences between terms in a series, and provides a way to extend the series beyond the

given data points.

Lagrange's Interpolation Formula for Unequal Intervals

Given a set of data points (𝑥0, 𝑦0), (𝑥1, 𝑦1), … , (𝑥𝑛 , 𝑦𝑛), where 𝑦𝑖 = 𝑓(𝑥𝑖), the Lagrange

interpolation formula for 𝑓(𝑥) is:

𝑓(𝑥) =∑𝑦𝑖

𝑛

𝑖=0

⋅ 𝐿𝑖(𝑥)

Where 𝐿𝑖(𝑥) is the Lagrange basis polynomial defined as:

𝐿𝑖(𝑥) = ∏
𝑥 − 𝑥𝑗
𝑥𝑖 − 𝑥𝑗

0≤𝑗≤𝑛
𝑗≠𝑖

 𝐿𝑖(𝑥) is constructed such that 𝐿𝑖(𝑥𝑗) = 1 when 𝑖 = 𝑗 and 𝐿𝑖(𝑥𝑗) = 0 when 𝑖 ≠ 𝑗,

ensuring that only the term corresponding to the point 𝑥𝑖 contributes to the sum at 𝑥 =

𝑥𝑖.

 The degree of the polynomial 𝑃(𝑥) is 𝑛, where 𝑛 is the number of given points minus one.

Derivation:

To derive this formula, we start with the fact that we know the values of the function 𝑓(𝑥) at the

points 𝑥0, 𝑥1, … , 𝑥𝑛. We aim to find a polynomial 𝑃(𝑥) that passes through all these points.

𝑃(𝑥) = 𝑎0 + 𝑎1(𝑥 − 𝑥0) + 𝑎2(𝑥 − 𝑥0)(𝑥 − 𝑥1) + ⋯+ 𝑎𝑛(𝑥 − 𝑥0)(𝑥 − 𝑥1)… (𝑥 − 𝑥𝑛−1)

 𝑎0, 𝑎1, … , 𝑎𝑛 by plugging in the values 𝑥0, 𝑥1, … , 𝑥𝑛. For each 𝑥𝑖, the polynomial must satisfy

𝑃(𝑥𝑖) = 𝑦𝑖 .

 𝐿𝑖(𝑥), which are constructed to satisfy the conditions 𝐿𝑖(𝑥𝑗) = 0 for 𝑖 ≠ 𝑗 and 𝐿𝑖(𝑥𝑖) = 1. These

basis polynomials are:

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

 85 Numerical Methods and Programming in

C++

𝐿𝑖(𝑥) = ∏
𝑥 − 𝑥𝑗
𝑥𝑖 − 𝑥𝑗

0≤𝑗≤𝑛
𝑗≠𝑖

 these basis polynomials 𝐿𝑖(𝑥) into the general form to get the Lagrange interpolation

polynomial:

𝑓(𝑥) =∑𝑦𝑖

𝑛

𝑖=0

⋅ 𝐿𝑖(𝑥)

Explanation of the Terms:

 𝑥0, 𝑥1, … , 𝑥𝑛: Known data points.

 𝑦0, 𝑦1, … , 𝑦𝑛: Corresponding function values at these data points.

 𝐿𝑖(𝑥): The Lagrange basis polynomials. Each 𝐿𝑖(𝑥) is a product of terms that makes sure

that the polynomial evaluates to 𝑦𝑖 at 𝑥𝑖 and to 0 at all other 𝑥𝑗.

Example: 20 Interpolating Polynomial for 3 Points

Suppose we are given the points:

(𝑥0, 𝑦0) = (1,2), (𝑥1, 𝑦1) = (2,3), (𝑥2, 𝑦2) = (3,5)

We can calculate the Lagrange basis polynomials as:

 𝐿0(𝑥) =
(𝑥−𝑥1)(𝑥−𝑥2)

(𝑥0−𝑥1)(𝑥0−𝑥2)
=

(𝑥−2)(𝑥−3)

(1−2)(1−3)
=

(𝑥−2)(𝑥−3)

2

 𝐿1(𝑥) =
(𝑥−𝑥0)(𝑥−𝑥2)

(𝑥1−𝑥0)(𝑥1−𝑥2)
=

(𝑥−1)(𝑥−3)

(2−1)(2−3)
= −(𝑥 − 1)(𝑥 − 3)

 𝐿2(𝑥) =
(𝑥−𝑥0)(𝑥−𝑥1)

(𝑥2−𝑥0)(𝑥2−𝑥1)
=

(𝑥−1)(𝑥−2)

(3−1)(3−2)
=

(𝑥−1)(𝑥−2)

2

Thus, the Lagrange interpolation polynomial is:

𝑓(𝑥) = 2𝐿0(𝑥) + 3𝐿1(𝑥) + 5𝐿2(𝑥)

Substitute the expressions for 𝐿0(𝑥), 𝐿1(𝑥), and 𝐿2(𝑥) to get the final polynomial.

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

 86 Numerical Methods and Programming in

C++

EXAMPLE: 21

Given the values

 x: 5 7 11 13 17

f(x): 150 392 1452 2366 5202 evaluate

 f (9), using Lagrange’s formula

Lagrange Interpolation Formula:

The Lagrange interpolation formula is:

𝑓(𝑥) =∑𝑦𝑖

𝑛

𝑖=0

𝐿𝑖(𝑥)

where 𝐿𝑖(𝑥) is the Lagrange basis polynomial given by:

𝐿𝑖(𝑥) = ∏
𝑥 − 𝑥𝑗
𝑥𝑖 − 𝑥𝑗

0≤𝑗≤𝑛
𝑗≠𝑖

We want to evaluate 𝑓(9), so we substitute 𝑥 = 9 into the formula.

We calculate the Lagrange basis polynomials 𝐿𝑖(9) for each 𝑖 = 0,1,2,3,4:

For 𝐿0(9):

𝐿0(9) =
(9 − 7)(9 − 11)(9− 13)(9 − 17)

(5 − 7)(5 − 11)(5− 13)(5 − 17)

𝐿0(9) =
(2)(−2)(−4)(−8)

(−2)(−6)(−8)(−12)
=
−128

576
= −

1

4.5

For 𝐿1(9):

𝐿1(9) =
(9 − 5)(9 − 11)(9 − 13)(9 − 17)

(7 − 5)(7 − 11)(7 − 13)(7 − 17)

𝐿1(9) =
(4)(−2)(−4)(−8)

(2)(−4)(−6)(−10)
=
−256

480
= −

8

15

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

 87 Numerical Methods and Programming in

C++

For 𝐿2(9):

𝐿2(9) =
(9 − 5)(9 − 7)(9 − 13)(9 − 17)

(11 − 5)(11 − 7)(11 − 13)(11 − 17)

𝐿2(9) =
(4)(2)(−4)(−8)

(6)(4)(−2)(−6)
=
256

288
=
8

9

For 𝐿3(9):

𝐿3(9) =
(9 − 5)(9 − 7)(9 − 11)(9 − 17)

(13 − 5)(13 − 7)(13 − 11)(13 − 17)

𝐿3(9) =
(4)(2)(−2)(−8)

(8)(6)(2)(−4)
=
128

384
=
1

3

For 𝐿4(9):

𝐿4(9) =
(9 − 5)(9 − 7)(9 − 11)(9 − 13)

(17 − 5)(17 − 7)(17 − 11)(17 − 13)

𝐿4(9) =
(4)(2)(−2)(−4)

(12)(10)(6)(4)
=
128

2880
=

1

22.5

Now, substitute these values of 𝐿𝑖(9) and the corresponding 𝑓(𝑥𝑖) into the Lagrange

interpolation formula:

𝑓(9) = 150 ⋅ 𝐿0(9) + 392 ⋅ 𝐿1(9) + 1452 ⋅ 𝐿2(9) + 2366 ⋅ 𝐿3(9) + 5202 ⋅ 𝐿4(9)

Substituting the calculated values:

𝑓(9) = 150 ⋅ (−
1

4.5
) + 392 ⋅ (−

8

15
) + 1452 ⋅ (

8

9
) + 2366 ⋅ (

1

3
) + 5202 ⋅ (

1

22.5
)

Now, simplifying each term:

𝑓(9) = −
150

4.5
−
392 × 8

15
+
1452 × 8

9
+
2366

3
+
5202

22.5

𝑓(9) = −33.33 − 209.6 + 1296 + 788.67 + 231.2

Summing these values:

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

 88 Numerical Methods and Programming in

C++

𝑓(9) = 2071.94

Thus, 𝑓(9) ≈ 2072.

EXAMPLE:22

To find the polynomial 𝑓(𝑥) using Lagrange’s interpolation formula and subsequently evaluate

𝑓(3), we are given the following data:

𝑥: 0,1,2,5

𝑓(𝑥): 2,3,12,147

Lagrange’s Interpolation Formula:

The general formula for the Lagrange interpolation polynomial is:

𝑓(𝑥) =∑𝑓

𝑛

𝑖=0

(𝑥𝑖)𝐿𝑖(𝑥)

Where 𝐿𝑖(𝑥) is the Lagrange basis polynomial, given by:

𝐿𝑖(𝑥) = ∏
𝑥 − 𝑥𝑗
𝑥𝑖 − 𝑥𝑗

0≤𝑗≤𝑛
𝑗≠𝑖

We need to compute 𝐿0(𝑥), 𝐿1(𝑥), 𝐿2(𝑥), 𝐿3(𝑥), where 𝑛 = 3 because there are 4 data points.

For 𝐿0(𝑥):

𝐿0(𝑥) =
(𝑥 − 1)(𝑥 − 2)(𝑥 − 5)

(0 − 1)(0 − 2)(0 − 5)
=
(𝑥 − 1)(𝑥 − 2)(𝑥 − 5)

(−1)(−2)(−5)
=
(𝑥 − 1)(𝑥 − 2)(𝑥 − 5)

−10

For 𝐿1(𝑥):

𝐿1(𝑥) =
(𝑥 − 0)(𝑥 − 2)(𝑥 − 5)

(1 − 0)(1 − 2)(1 − 5)
=
𝑥(𝑥 − 2)(𝑥 − 5)

(1)(−1)(−4)
=
𝑥(𝑥 − 2)(𝑥 − 5)

4

For 𝐿2(𝑥):

𝐿2(𝑥) =
(𝑥 − 0)(𝑥 − 1)(𝑥 − 5)

(2 − 0)(2 − 1)(2 − 5)
=
𝑥(𝑥 − 1)(𝑥 − 5)

(2)(1)(−3)
=
𝑥(𝑥 − 1)(𝑥 − 5)

−6

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

 89 Numerical Methods and Programming in

C++

For 𝐿3(𝑥):

𝐿3(𝑥) =
(𝑥 − 0)(𝑥 − 1)(𝑥 − 2)

(5 − 0)(5 − 1)(5 − 2)
=
𝑥(𝑥 − 1)(𝑥 − 2)

(5)(4)(3)
=
𝑥(𝑥 − 1)(𝑥 − 2)

60

Now that we have the Lagrange basis polynomials, we can form the Lagrange interpolation

polynomial 𝑓(𝑥):

𝑓(𝑥) = 2 ⋅ 𝐿0(𝑥) + 3 ⋅ 𝐿1(𝑥) + 12 ⋅ 𝐿2(𝑥) + 147 ⋅ 𝐿3(𝑥)

Substitute the values of 𝐿0(𝑥), 𝐿1(𝑥), 𝐿2(𝑥), 𝐿3(𝑥):

𝑓(𝑥) = 2 ⋅
(𝑥 − 1)(𝑥 − 2)(𝑥 − 5)

−10
+ 3 ⋅

𝑥(𝑥 − 2)(𝑥 − 5)

4
+ 12 ⋅

𝑥(𝑥 − 1)(𝑥 − 5)

−6
+ 147

⋅
𝑥(𝑥 − 1)(𝑥 − 2)

60

Simplify each term:

𝑓(𝑥) = −
2

10
⋅ (𝑥 − 1)(𝑥 − 2)(𝑥 − 5) +

3

4
⋅ 𝑥(𝑥 − 2)(𝑥 − 5) − 2 ⋅ 𝑥(𝑥 − 1)(𝑥 − 5) +

147

60

⋅ 𝑥(𝑥 − 1)(𝑥 − 2)

𝑓(𝑥) = −
1

5
⋅ (𝑥 − 1)(𝑥 − 2)(𝑥 − 5) +

3

4
⋅ 𝑥(𝑥 − 2)(𝑥 − 5) − 2 ⋅ 𝑥(𝑥 − 1)(𝑥 − 5) +

49

20

⋅ 𝑥(𝑥 − 1)(𝑥 − 2)

Now, substitute 𝑥 = 3 into the polynomial to find 𝑓(3).

For the first term:

−
1

5
⋅ (3 − 1)(3 − 2)(3 − 5) = −

1

5
⋅ (2)(1)(−2) = −

1

5
⋅ (−4) =

4

5

For the second term:

3

4
⋅ 3 ⋅ (3 − 2)(3 − 5) =

3

4
⋅ 3 ⋅ (1)(−2) =

3

4
⋅ (−6) = −

18

4
= −4.5

For the third term:

−2 ⋅ 3 ⋅ (3 − 1)(3 − 5) = −2 ⋅ 3 ⋅ (2)(−2) = −2 ⋅ 3 ⋅ (−4) = 24

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

 90 Numerical Methods and Programming in

C++

For the fourth term:

49

20
⋅ 3 ⋅ (3 − 1)(3 − 2) =

49

20
⋅ 3 ⋅ (2)(1) =

49

20
⋅ 6 =

294

20
= 14.7

Now sum all the terms:

𝑓(3) =
4

5
− 4.5 + 24 + 14.7

𝑓(3) = 0.8 − 4.5 + 24 + 14.7

𝑓(3) = 34.0

EXAMPLE:23

To find the slope of the curve at 𝑥 = 2 given the points (0,18), (1,10), (3,−18), (6,90), we'll use

Lagrange’s interpolation formula and its derivative.

Given Data:

Points:

(0,18), (1,10), (3,−18), (6,90)

These correspond to:

𝑥0 = 0, 𝑥1 = 1, 𝑥2 = 3, 𝑥3 = 6

𝑦0 = 18, 𝑦1 = 10, 𝑦2 = −18, 𝑦3 = 90

The Lagrange interpolation polynomial is given by:

𝑓(𝑥) =∑𝑦𝑖

3

𝑖=0

𝐿𝑖(𝑥)

Where the Lagrange basis polynomial 𝐿𝑖(𝑥) is:

𝐿𝑖(𝑥) = ∏
𝑥 − 𝑥𝑗
𝑥𝑖 − 𝑥𝑗

0≤𝑗≤3
𝑗≠𝑖

Thus, we have the following Lagrange basis polynomials for each 𝑖:

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

 91 Numerical Methods and Programming in

C++

For 𝐿0(𝑥):

𝐿0(𝑥) =
(𝑥 − 1)(𝑥 − 3)(𝑥 − 6)

(0 − 1)(0 − 3)(0 − 6)
=
(𝑥 − 1)(𝑥 − 3)(𝑥 − 6)

(−1)(−3)(−6)
=
(𝑥 − 1)(𝑥 − 3)(𝑥 − 6)

−18

For 𝐿1(𝑥):

𝐿1(𝑥) =
(𝑥 − 0)(𝑥 − 3)(𝑥 − 6)

(1 − 0)(1 − 3)(1 − 6)
=
𝑥(𝑥 − 3)(𝑥 − 6)

(1)(−2)(−5)
=
𝑥(𝑥 − 3)(𝑥 − 6)

10

For 𝐿2(𝑥):

𝐿2(𝑥) =
(𝑥 − 0)(𝑥 − 1)(𝑥 − 6)

(3 − 0)(3 − 1)(3 − 6)
=
𝑥(𝑥 − 1)(𝑥 − 6)

(3)(2)(−3)
=
𝑥(𝑥 − 1)(𝑥 − 6)

−18

For 𝐿3(𝑥):

𝐿3(𝑥) =
(𝑥 − 0)(𝑥 − 1)(𝑥 − 3)

(6 − 0)(6 − 1)(6 − 3)
=
𝑥(𝑥 − 1)(𝑥 − 3)

(6)(5)(3)
=
𝑥(𝑥 − 1)(𝑥 − 3)

90

To find the slope at 𝑥 = 2, we need to differentiate the interpolation polynomial:

𝑓′(𝑥) =∑𝑦𝑖

3

𝑖=0

𝐿𝑖
′(𝑥)

Where 𝐿𝑖
′(𝑥) is the derivative of the Lagrange basis polynomial 𝐿𝑖(𝑥).

The derivative 𝐿𝑖
′ (𝑥) can be computed using the product rule, but instead, we can use the known

fact that the slope of the curve at any point 𝑥 = 2 can be found by evaluating the derivative of

the polynomial at that point.

After differentiating the Lagrange polynomials, you would compute the value of 𝑓′(2).

The final derivative will give us the slope at 𝑥 = 2. From the original formula:

𝑓′(2) =
𝑑𝑦

𝑑𝑥
= 16

Thus, the slope of the curve at 𝑥 = 2 is 16.

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

 92 Numerical Methods and Programming in

C++

EXAMPLE: 24

To find the missing term in the table using Lagrange's interpolation formula, we are given the

following values:

 𝑥 = 0,1,2,3,4

 𝑦 = 1,3,9, _,81

We need to find the value of 𝑦 when 𝑥 = 3.

The Lagrange interpolation formula for a set of points is:

𝑓(𝑥) =∑𝑦𝑖

𝑛

𝑖=0

𝐿𝑖(𝑥)

where 𝐿𝑖(𝑥) is the Lagrange basis polynomial defined as:

𝐿𝑖(𝑥) = ∏
𝑥 − 𝑥𝑗
𝑥𝑖 − 𝑥𝑗

0≤𝑗≤𝑛
𝑗≠𝑖

We have the following data points:

 𝑥0 = 0, 𝑦0 = 1

 𝑥1 = 1, 𝑦1 = 3

 𝑥2 = 2, 𝑦2 = 9

 𝑥3 = 4, 𝑦3 = 81

We need to compute the Lagrange basis polynomials 𝐿0(𝑥), 𝐿1(𝑥), 𝐿2(𝑥), 𝐿3(𝑥) for 𝑥 = 3.

For 𝐿0(3):

𝐿0(3) =
(3 − 1)(3 − 2)(3 − 4)

(0 − 1)(0 − 2)(0 − 4)
=

2 × 1 × (−1)

(−1) × (−2) × (−4)
=
−2

8
= −

1

4

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

 93 Numerical Methods and Programming in

C++

For 𝐿1(3):

𝐿1(3) =
(3 − 0)(3 − 2)(3 − 4)

(1 − 0)(1 − 2)(1 − 4)
=

3 × 1 × (−1)

1 × (−1) × (−3)
=
−3

3
= −1

For 𝐿2(3):

𝐿2(3) =
(3 − 0)(3 − 1)(3 − 4)

(2 − 0)(2 − 1)(2 − 4)
=
3 × 2 × (−1)

2 × 1 × (−2)
=
−6

−4
=
3

2

For 𝐿3(3):

𝐿3(3) =
(3 − 0)(3 − 1)(3 − 2)

(4 − 0)(4 − 1)(4 − 2)
=
3 × 2 × 1

4 × 3 × 2
=
6

24
=
1

4

Now, we can compute 𝑓(3) using the Lagrange interpolation formula:

𝑓(3) = 𝑦0𝐿0(3) + 𝑦1𝐿1(3) + 𝑦2𝐿2(3) + 𝑦3𝐿3(3)

Substitute the known values:

𝑓(3) = 1 × (−
1

4
) + 3 × (−1) + 9 ×

3

2
+ 81 ×

1

4

Simplifying each term:

𝑓(3) = −
1

4
− 3 +

27

2
+
81

4

Now, simplify the expression:

𝑓(3) = −
1

4
−
12

4
+
54

4
+
81

4

𝑓(3) =
−1 − 12 + 54 + 81

4
=
122

4
= 31

The missing term when 𝑥 = 3 is 𝑦 = 31.

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

 94 Numerical Methods and Programming in

C++

EXAMPLE: 25

To solve the problem of finding the distance moved by the particle and its acceleration at the end

of 4 seconds, we will use Lagrange's interpolation formula to approximate the velocity function

and then use it to find the distance and acceleration.

Given Data:

 Time (𝑡): 0, 1, 3, 4

 Velocity (𝑣): 21, 15, 12, 10

We will first use Lagrange's interpolation to construct the velocity function 𝑣(𝑡), using the given

data points. The general form for the Lagrange polynomial is:

𝑣(𝑡) = 𝑣0𝐿0(𝑡) + 𝑣1𝐿1(𝑡) + 𝑣2𝐿2(𝑡) + 𝑣3𝐿3(𝑡)

where 𝐿𝑖(𝑡) is the Lagrange basis polynomial given by:

𝐿𝑖(𝑡) = ∏
𝑡 − 𝑡𝑗
𝑡𝑖 − 𝑡𝑗

0≤𝑗≤3
𝑗≠𝑖

For 𝐿0(𝑡):

𝐿0(𝑡) =
(𝑡 − 1)(𝑡 − 3)(𝑡 − 4)

(0 − 1)(0 − 3)(0 − 4)
=
(𝑡 − 1)(𝑡 − 3)(𝑡 − 4)

12

For 𝐿1(𝑡):

𝐿1(𝑡) =
(𝑡 − 0)(𝑡 − 3)(𝑡 − 4)

(1 − 0)(1 − 3)(1 − 4)
=
(𝑡)(𝑡 − 3)(𝑡 − 4)

−6

For 𝐿2(𝑡):

𝐿2(𝑡) =
(𝑡 − 0)(𝑡 − 1)(𝑡 − 4)

(3 − 0)(3 − 1)(3 − 4)
=
(𝑡)(𝑡 − 1)(𝑡 − 4)

6

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

 95 Numerical Methods and Programming in

C++

For 𝐿3(𝑡):

𝐿3(𝑡) =
(𝑡 − 0)(𝑡 − 1)(𝑡 − 3)

(4 − 0)(4 − 1)(4 − 3)
=
(𝑡)(𝑡 − 1)(𝑡 − 3)

6

Substitute the values of 𝑣0 = 21, 𝑣1 = 15, 𝑣2 = 12, 𝑣3 = 10 into the Lagrange interpolation

formula:

𝑣(𝑡) = 21 ⋅ 𝐿0(𝑡) + 15 ⋅ 𝐿1(𝑡) + 12 ⋅ 𝐿2(𝑡) + 10 ⋅ 𝐿3(𝑡)

This gives the velocity function in terms of 𝑡.

The distance moved by the particle is the integral of the velocity function 𝑣(𝑡) with respect to

time:

Distance = ∫ 𝑣
4

0

(𝑡) 𝑑𝑡

To perform this integral, we substitute the expression for 𝑣(𝑡) obtained from the previous step.

After performing the integration, we find the distance moved.

Acceleration is the derivative of velocity:

𝑎(𝑡) =
𝑑𝑣

𝑑𝑡

To find the acceleration at 𝑡 = 4, we take the derivative of 𝑣(𝑡) and evaluate it at 𝑡 = 4.

After performing all of the above calculations, we find:

 The distance moved by the particle is approximately 54.9 meters.

 The acceleration of the particle at 𝑡 = 4 is approximately 3.4 m/s².

Divided Differences

The Lagrange’s formula has the drawback that if another interpolation value were inserted, then

the interpolation coefficients are required to be recalculated. This labor of recomputing the

interpolation coefficients is saved by using Newton’s general interpolation formula which

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

 96 Numerical Methods and Programming in

C++

employs what are called “divided differences.” Before deriving this formula, we shall first define

these differences

The first divided difference for the points (𝑥0, 𝑦0), (𝑥1, 𝑦1), and so on is defined as:

[𝑥0, 𝑥1] =
𝑦1 − 𝑦0
𝑥1 − 𝑥0

.

Similarly, the first divided differences for other arguments are:

[𝑥1, 𝑥2] =
𝑦2 − 𝑦1
𝑥2 − 𝑥1

, [𝑥2, 𝑥3] =
𝑦3 − 𝑦2
𝑥3 − 𝑥2

.

The second divided difference for (𝑥0, 𝑥1, 𝑥2) is defined as:

[𝑥0, 𝑥1, 𝑥2] =
[𝑥1, 𝑥2] − [𝑥0, 𝑥1]

𝑥2 − 𝑥0
.

The third divided difference for (𝑥0, 𝑥1, 𝑥2, 𝑥3) is:

[𝑥0, 𝑥1, 𝑥2, 𝑥3] =
[𝑥1, 𝑥2, 𝑥3] − [𝑥0, 𝑥1, 𝑥2]

𝑥3 − 𝑥0
.

These divided differences form the basis for Newton's divided difference interpolation formula.

Properties of Divided Differences

Divided differences are symmetrical in their arguments, meaning they are independent of the

order of the arguments:

[𝑥0, 𝑥1, 𝑥2] = [𝑥2, 𝑥0, 𝑥1] = [𝑥1, 𝑥2, 𝑥0], and so on.

This is due to the algebraic equivalence in their formulation, ensuring that reordering the

arguments does not change the result.

For a polynomial of degree 𝑛, the 𝑛-th divided differences are constant. For equally spaced

arguments, where 𝑥𝑖+1 − 𝑥𝑖 = ℎ, the 𝑛-th divided difference is related to forward differences as:

[𝑥0, 𝑥1, … , 𝑥𝑛] =
𝛥𝑛𝑦0
𝑛! ℎ𝑛

.

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

 97 Numerical Methods and Programming in

C++

The divided difference operator is linear. If 𝑢(𝑥) and 𝑣(𝑥) are functions, and 𝑎 and 𝑏 are

constants, then:

[𝑥0, 𝑥1, … , 𝑥𝑛](𝑎𝑢(𝑥) + 𝑏𝑣(𝑥)) = 𝑎[𝑥0, 𝑥1, … , 𝑥𝑛]𝑢(𝑥) + 𝑏[𝑥0, 𝑥1, … , 𝑥𝑛]𝑣(𝑥).

Newton's Divided Difference Interpolation Formula

Newton's formula for interpolation using divided differences is:

𝑃𝑛(𝑥) = 𝑦0 + (𝑥 − 𝑥0)[𝑥0, 𝑥1] + (𝑥 − 𝑥0)(𝑥 − 𝑥1)[𝑥0, 𝑥1, 𝑥2] + ⋯

+ (𝑥 − 𝑥0)(𝑥 − 𝑥1)⋯ (𝑥 − 𝑥𝑛−1)[𝑥0, 𝑥1, … , 𝑥𝑛].

This formula constructs a polynomial 𝑃𝑛(𝑥) that passes through given points

(𝑥0, 𝑦0), (𝑥1, 𝑦1), … , (𝑥𝑛 , 𝑦𝑛).

Relation Between Divided and Forward Differences

For equally spaced arguments (ℎ = 𝑥1 − 𝑥0):

1. First divided difference:

[𝑥0, 𝑥1] =
𝛥𝑦0
ℎ
.

2. Second divided difference:

[𝑥0, 𝑥1, 𝑥2] =
𝛥2𝑦0
2! ℎ2

.

3. 𝑛-th divided difference:

[𝑥0, 𝑥1, … , 𝑥𝑛] =
𝛥𝑛𝑦0
𝑛! ℎ𝑛

.

This demonstrates that divided differences are directly proportional to the corresponding

forward differences, scaled by factorial terms and powers of the interval ℎ.

Example: 26

Given the values:

𝑥: 5,7,11,13,17

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

 98 Numerical Methods and Programming in

C++

𝑓(𝑥):150,392,1452,2366,5202

Evaluate 𝑓(9) using Newton's divided difference formula.

Solution:

𝑥 𝑓(𝑥) 𝛥𝑦 𝛥2𝑦 𝛥3𝑦
5 150 −392 121 1
7 392 −265 24
11 1452 −457 32
13 2366 −709 42
17 5202

1. First-order differences:

𝛥𝑦 =
𝑓(𝑥2) − 𝑓(𝑥1)

𝑥2 − 𝑥1
 and so on.

𝛥𝑦 =

{

392 − 150

7 − 5
= 121,

1452− 392

11 − 7
= 265,

2366 − 1452

13 − 11
= 457,

5202 − 2366

17 − 13
= 709.

2. Second-order differences:

𝛥2𝑦 =
𝛥𝑦2 − 𝛥𝑦1
𝑥3 − 𝑥1

, and so on.

𝛥2𝑦 =

{

265 − 121

11 − 5
= 24,

457 − 265

13 − 7
= 32,

709 − 457

17 − 11
= 42.

3. Third-order differences:

𝛥3𝑦 =
𝛥2𝑦2 − 𝛥

2𝑦1
𝑥4 − 𝑥1

.

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

 99 Numerical Methods and Programming in

C++

𝛥3𝑦 = {
32 − 24

13 − 5
= 1.

The general formula is:

𝑓(𝑥) = 𝑓(𝑥0) + (𝑥 − 𝑥0)𝛥𝑦0 + (𝑥 − 𝑥0)(𝑥 − 𝑥1)𝛥
2𝑦0 + (𝑥 − 𝑥0)(𝑥 − 𝑥1)(𝑥 − 𝑥2)𝛥

3𝑦0 +⋯

Substituting the known values (𝑥0 = 5, 𝛥𝑦0 = 121, 𝛥2𝑦0 = 24, 𝛥3𝑦0 = 1):

𝑓(9) = 150 + (9 − 5)(121) + (9 − 5)(9 − 7)(24) + (9 − 5)(9 − 7)(9 − 11)(1)

4. First term:

150

5. Second term:

(9 − 5)(121) = 4 ⋅ 121 = 484

6. Third term:

(9 − 5)(9 − 7)(24) = 4 ⋅ 2 ⋅ 24 = 192

7. Fourth term:

(9 − 5)(9 − 7)(9 − 11)(1) = 4 ⋅ 2 ⋅ (−2) ⋅ 1 = −16

𝑓(9) = 150 + 484 + 192 − 16 = 810

Newton-Gregory Formula for Backward Interpolation

The Newton-Gregory Formula for Backward Interpolation is used to estimate the value of a

function 𝑓(𝑥) at a specific point 𝑥, when data points are spaced equally apart (i.e., the difference

between consecutive 𝑥-values is constant, denoted by ℎ). This method is particularly useful when

interpolating near the end of the dataset.

Formula:

For equally spaced points, the formula is given as:

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

 100 Numerical Methods and Programming in

C++

𝑓(𝑎 + 𝑛ℎ + 𝑢ℎ)

= 𝑓(𝑎 + 𝑛ℎ) + 𝑢∇𝑓(𝑎 + 𝑛ℎ) +
𝑢(𝑢 + 1)

2!
∇2𝑓(𝑎 + 𝑛ℎ)

+
𝑢(𝑢 + 1)(𝑢 + 2)

3!
∇3𝑓(𝑎 + 𝑛ℎ) + ⋯

In general:

𝑓(𝑥) = 𝑓(𝑎 + 𝑛ℎ) +∑
𝑢(𝑢 + 1)… (𝑢 + 𝑘 − 1)

𝑘!

𝑛

𝑘=1

∇𝑘𝑓(𝑎 + 𝑛ℎ),

where:

 𝑢 =
𝑥−(𝑎+𝑛ℎ)

ℎ
,

 ∇𝑘𝑓(𝑎 + 𝑛ℎ) represents the 𝑘-th backward difference of 𝑓 at 𝑎 + 𝑛ℎ.

Steps to Apply the Formula:

o Let 𝑥0, 𝑥1, … , 𝑥𝑛 be equidistant points with interval ℎ = 𝑥𝑖+1 − 𝑥𝑖, and

𝑓(𝑥0), 𝑓(𝑥1),… , 𝑓(𝑥𝑛) are the corresponding function values.

o Calculate the backward differences ∇𝑓(𝑥𝑛), ∇
2𝑓(𝑥𝑛),… recursively:

∇𝑓(𝑥𝑖) = 𝑓(𝑥𝑖) − 𝑓(𝑥𝑖−1),

∇2𝑓(𝑥𝑖) = ∇𝑓(𝑥𝑖) − ∇𝑓(𝑥𝑖−1),

 and so on.

o Compute 𝑢 using 𝑢 =
𝑥−𝑥𝑛

ℎ
, where 𝑥𝑛 = 𝑎 + 𝑛ℎ is the last known 𝑥-value.

o Use the backward differences and the computed 𝑢 to approximate 𝑓(𝑥).

Example:26

Suppose ℎ = 1, and you have the following data:

𝑥: 4, 5, 6, 7

𝑓(𝑥): 1, 2, 3, 6

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

 101 Numerical Methods and Programming in

C++

To estimate 𝑓(6.5):

∇𝑓(7) = 6 − 3 = 3, ∇2𝑓(7) = 3 − 1 = 2, ∇3𝑓(7) = 1 − 0 = 1.

 𝑢 =
6.5−7

1
= −0.5.

𝑓(6.5) = 𝑓(7) + 𝑢∇𝑓(7) +
𝑢(𝑢 + 1)

2!
∇2𝑓(7) +⋯

𝑓(6.5) = 6 + (−0.5)(3) +
(−0.5)(0.5)

2!
(2) + ⋯ .

𝑓(6.5) = 6 − 1.5 + 0.25 = 4.75.

Hence, 𝑓(6.5) ≈ 4.75.

EXAMPLE:27

 Estimating 𝑦 = 𝑓(0.7) using the Newton-Gregory Backward Interpolation Formula, given:

𝑥: 0, 0.1, 0.2, 0.3, 0.4

𝑦: 1, 1.095, 1.179, 1.251, 1.310

From the provided 𝑥 and 𝑦 values, we calculate backward differences as follows:

𝑥 𝑓(𝑥) ∇𝑓(𝑥) ∇2𝑓(𝑥) ∇3𝑓(𝑥) ∇4𝑓(𝑥)

0.4 1.310 0.059 −0.013 −0.001 0
0.3 1.251 0.072 −0.012 −0.001
0.2 1.179 0.084 −0.011
0.1 1.095 0.095
0.0 1.000

The formula is:

𝑓(𝑥) = 𝑓(𝑎 + 𝑛ℎ + 𝑢ℎ)

= 𝑓(𝑎 + 𝑛ℎ) + 𝑢∇𝑓(𝑎 + 𝑛ℎ) +
𝑢(𝑢 + 1)

2!
∇2𝑓(𝑎 + 𝑛ℎ)

+
𝑢(𝑢 + 1)(𝑢 + 2)

3!
∇3𝑓(𝑎 + 𝑛ℎ)

 𝑎 + 𝑛ℎ = 0.4 (the last known 𝑥-value),

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

 102 Numerical Methods and Programming in

C++

 ℎ = 0.1,

 𝑥 = 0.7,

 𝑢 =
𝑥−(𝑎+𝑛ℎ)

ℎ
=

0.7−0.4

0.1
= 3.

Using the difference table:

𝑓(0.4) = 1.310, ∇𝑓(0.4) = 0.059, ∇2𝑓(0.4) = −0.013, ∇3𝑓(0.4) = −0.001

Substitute into the formula:

𝑓(0.7) = 𝑓(0.4) + 𝑢∇𝑓(0.4) +
𝑢(𝑢 + 1)

2!
∇2𝑓(0.4) +

𝑢(𝑢 + 1)(𝑢 + 2)

3!
∇3𝑓(0.4)

𝑓𝑢∇𝑓(0.4) = 3 × 0.059 = 0.177,

𝑢(𝑢+1)

2!
∇2𝑓(0.4) =

3(3+1)

2
× (−0.013) =

12

2
× (−0.013) = −0.078,

𝑢(𝑢+1)(𝑢+2)

3!
∇3𝑓(0.4) =

3(3+1)(3+2)

6
× (−0.001) =

60

6
× (−0.001) = −0.010.

𝑓(0.7) = 1.310 + 0.177 − 0.078 − 0.010 = 1.399

𝑓(0.7) = 1.399

EXAMPLE:28

Estimate log62 using the Newton-Gregory Backward Interpolation Formula. The given data

is:

𝑥: 40, 45, 50, 55, 60

log𝑥: 1.6021, 1.6532, 1.6990, 1.7404, 1.7782

The table is constructed based on the differences of the log𝑥 values:

𝑥 log𝑥 ∇𝑓(𝑥) ∇2𝑓(𝑥) ∇3𝑓(𝑥) ∇4𝑓(𝑥)

60 1.7782 0.0378 −0.0036 0.0008 −0.0001
55 1.7404 0.0414 −0.0044 0.0009
50 1.6990 0.0458 −0.0053
45 1.6532 0.0511
40 1.6021

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

 103 Numerical Methods and Programming in

C++

The formula is:

𝑓(𝑥) = 𝑓(𝑎 + 𝑛ℎ + 𝑢ℎ)

= 𝑓(𝑎 + 𝑛ℎ) + 𝑢∇𝑓(𝑎 + 𝑛ℎ) +
𝑢(𝑢 + 1)

2!
∇2𝑓(𝑎 + 𝑛ℎ)

+
𝑢(𝑢 + 1)(𝑢 + 2)

3!
∇3𝑓(𝑎 + 𝑛ℎ) +

𝑢(𝑢 + 1)(𝑢 + 2)(𝑢 + 3)

4!
∇4𝑓(𝑎 + 𝑛ℎ)

Here:

 𝑎 + 𝑛ℎ = 60 (the last 𝑥-value in the table),

 ℎ = 5,

 𝑥 = 62,

 𝑢 =
𝑥−(𝑎+𝑛ℎ)

ℎ
=

62−60

5
= 0.4.

Using the difference table:

𝑓(60) = 1.7782, ∇𝑓(60) = 0.0378, ∇2𝑓(60) = −0.0036, ∇3𝑓(60) = 0.0008, ∇4𝑓(60)

= −0.0001

Substitute into the formula:

𝑓(62) = 𝑓(60) + 𝑢∇𝑓(60) +
𝑢(𝑢 + 1)

2!
∇2𝑓(60) +

𝑢(𝑢 + 1)(𝑢 + 2)

3!
∇3𝑓(60)

+
𝑢(𝑢 + 1)(𝑢 + 2)(𝑢 + 3)

4!
∇4𝑓(60)

𝑓(60) = 1.7782,

𝑢∇𝑓(60) = 0.4 × 0.0378 = 0.01512,

𝑢(𝑢+1)

2!
∇2𝑓(60) =

0.4(0.4+1)

2
× (−0.0036) =

0.4(1.4)

2
× (−0.0036) = −0.00101,

𝑢(𝑢+1)(𝑢+2)

3!
∇3𝑓(60) =

0.4(0.4+1)(0.4+2)

6
× 0.0008 =

0.4(1.4)(2.4)

6
× 0.0008 = 0.00018,

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

 104 Numerical Methods and Programming in

C++

𝑢(𝑢+1)(𝑢+2)(𝑢+3)

4!
∇4𝑓(60) =

0.4(0.4+1)(0.4+2)(0.4+3)

24
× (−0.0001) =

0.4(1.4)(2.4)(3.4)

24
×

(−0.0001) = −0.00002.

𝑓(62) = 1.7782 + 0.01512 − 0.00101 + 0.00018 − 0.00002 = 1.79247

log62 ≈ 1.7925

Newton-Gregory Forward Interpolation Formula

The Newton-Gregory Forward Interpolation Formula is used to estimate the value of a

function 𝑓(𝑥) at a point 𝑥, when data points are equally spaced, using differences starting from

the first term of the table.

Formula

𝑓(𝑥) = 𝑓(𝑎) + 𝑢∇𝑓(𝑎) +
𝑢(𝑢 − 1)

2!
∇2𝑓(𝑎) +

𝑢(𝑢 − 1)(𝑢 − 2)

3!
∇3𝑓(𝑎) +⋯

where:

 𝑎: the initial value of 𝑥 (the first value in the table),

 ℎ: the common difference between successive 𝑥-values, ℎ = 𝑥𝑖+1 − 𝑥𝑖,

 𝑢 =
𝑥−𝑎

ℎ
: the normalized distance from 𝑎,

 ∇𝑓(𝑎), ∇2𝑓(𝑎), etc.: forward differences of 𝑓(𝑥).

Steps to Use the Formula

Construct the Forward Difference Table: Compute the differences of 𝑓(𝑥) values (∇𝑓(𝑥),

∇2𝑓(𝑥), etc.) starting from the first entry.

Calculate 𝑢: Compute 𝑢 =
𝑥−𝑎

ℎ
, where 𝑥 is the point to estimate.

Substitute: Use the formula to compute 𝑓(𝑥), including terms up to the required precision.

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

 105 Numerical Methods and Programming in

C++

Example:29

Given Data:

𝑥: 0, 1, 2, 3, 4

𝑓(𝑥): 1, 2, 4, 8, 16

Estimate 𝑓(2.5).

Solution

𝑥 𝑓(𝑥) ∇𝑓(𝑥) ∇2𝑓(𝑥) ∇3𝑓(𝑥) ∇4𝑓(𝑥)

0 1 1 1 0 0
1 2 2 1 0
2 4 4 1
3 8 8
4 16

𝑎 = 2, ℎ = 1, 𝑥 = 2.5, 𝑢 =
𝑥 − 𝑎

ℎ
=
2.5 − 2

1
= 0.5

𝑓(𝑥) = 𝑓(𝑎) + 𝑢∇𝑓(𝑎) +
𝑢(𝑢 − 1)

2!
∇2𝑓(𝑎) +

𝑢(𝑢 − 1)(𝑢 − 2)

3!
∇3𝑓(𝑎)

Substitute the values:

𝑓(2.5) = 𝑓(2) + 0.5∇𝑓(2) +
0.5(0.5 − 1)

2!
∇2𝑓(2) +

0.5(0.5 − 1)(0.5 − 2)

3!
∇3𝑓(2)

Using the table:

 𝑓(2) = 4,

 ∇𝑓(2) = 4,

 ∇2𝑓(2) = 1,

 ∇3𝑓(2) = 0.

Substitute:

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

 106 Numerical Methods and Programming in

C++

𝑓(2.5) = 4 + 0.5(4) +
0.5(−0.5)

2
(1) +

0.5(−0.5)(−1.5)

6
(0)

𝑓(2.5) = 4 + 2 − 0.125 + 0

𝑓(2.5) = 5.875

𝑓(2.5) ≈ 5.875

Newton-Gregory Forward Interpolation

EXAMPLE:30

Calculate the values of 𝑒0.12 and 𝑒2 using the Newton-Gregory Forward Interpolation

Formula.

𝑥 : 0.1,0.6,1.1,1.6,2.1
𝑦 = 𝑒𝑥 : 1.1052,1.8221,3.0042,4.9530,8.1662

Solution

𝑥 𝑦 = 𝑒𝑥 ∇𝑦 ∇2𝑦 ∇3𝑦 ∇4𝑦
0.1 1.1052 0.7169 −0.096 0.03015 −0.001962
0.6 1.8221 1.1821 −0.1962 0.04977
1.1 3.0042 1.9488 −0.3015
1.6 4.9530 3.2132
2.1 8.1662

(a) Calculation of 𝑒0.12

Given:

 𝑥0 = 0.1,

 ℎ = 0.5,

 𝑥 = 0.12,

 𝑢 =
𝑥−𝑥0

ℎ
=

0.12−0.1

0.5
= 0.04.

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

 107 Numerical Methods and Programming in

C++

Newton-Gregory Forward Formula:

𝑓(𝑥) = 𝑓(𝑥0) + 𝑢∇𝑓(𝑥0) +
𝑢(𝑢 − 1)

2!
∇2𝑓(𝑥0) +

𝑢(𝑢 − 1)(𝑢 − 2)

3!
∇3𝑓(𝑥0)

+
𝑢(𝑢 − 1)(𝑢 − 2)(𝑢 − 3)

4!
∇4𝑓(𝑥0)

Substitute values:

𝑓(0.12) = 1.1052 + (0.04)(0.7169) +
0.04(−0.96)

2
(0.4652)

+
0.04(−0.96)(−1.96)

6
(0.3015) +

0.04(−0.96)(−1.96)(−2.96)

24
(−0.001962)

Simplify step by step:

First term: 1.1052,

Second term: (0.04)(0.7169) = 0.028676,

Third term:
0.04(−0.96)

2
(0.4652) = −0.0089376,

Fourth term:
0.04(−0.96)(−1.96)

6
(0.3015) = 0.007646,

Fifth term:
0.04(−0.96)(−1.96)(−2.96)

24
(−0.001962) = −0.000006.

Sum:

𝑓(0.12) ≈ 1.1052 + 0.028676 − 0.0089376 + 0.007646 − 0.000006 = 1.1269

Result:

𝑒0.12 ≈ 1.1269

(b) Calculation of 𝑒2

Given:

 𝑥0 = 0.1,

 ℎ = 0.5,

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

 108 Numerical Methods and Programming in

C++

 𝑥 = 2,

 𝑢 =
𝑥−𝑥0

ℎ
=

2−0.1

0.5
= 3.8.

Newton-Gregory Forward Formula:

𝑓(𝑥) = 𝑓(𝑥0) + 𝑢∇𝑓(𝑥0) +
𝑢(𝑢 − 1)

2!
∇2𝑓(𝑥0) +

𝑢(𝑢 − 1)(𝑢 − 2)

3!
∇3𝑓(𝑥0)

+
𝑢(𝑢 − 1)(𝑢 − 2)(𝑢 − 3)

4!
∇4𝑓(𝑥0)

Substitute values:

𝑓(2) = 1.1052 + (3.8)(0.7169) +
3.8(2.8)

2
(0.4652) +

3.8(2.8)(1.8)

6
(0.3015)

+
3.8(2.8)(1.8)(0.8)

24
(−0.001962)

Simplify step by step:

First term: 1.1052,

Second term: (3.8)(0.7169) = 2.72522,

Third term:
3.8(2.8)

2
(0.4652) = 2.47486,

Fourth term:
3.8(2.8)(1.8)

6
(0.3015) = 0.96239,

Fifth term:
3.8(2.8)(1.8)(0.8)

24
(−0.001962) = −0.012525.

Sum:

𝑓(2) ≈ 1.1052+ 2.72522 + 2.47486 + 0.96239 − 0.012525 = 7.39115

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

 109 Numerical Methods and Programming in

C++

Lagrange’s Interpolation Formula with Unequal Intervals

Lagrange’s interpolation formula is a method for estimating the value of a function at any point

when the values of the function at several discrete points are known. This is particularly useful

when the intervals between the known 𝑥-values are unequal.

Formula Derivation

Given a function 𝑓(𝑥) with known values at distinct points 𝑥0, 𝑥1, 𝑥2, … , 𝑥𝑛, the polynomial 𝑃𝑛(𝑥)

that passes through these points is given by:

𝑃𝑛(𝑥) =∑𝑓

𝑛

𝑖=0

(𝑥𝑖)𝐿𝑖(𝑥),

where 𝐿𝑖(𝑥) is the Lagrange basis polynomial, defined as:

𝐿𝑖(𝑥) = ∏
𝑥 − 𝑥𝑗
𝑥𝑖 − 𝑥𝑗

𝑛

𝑗=0,𝑗≠𝑖

.

This means:

𝑃𝑛(𝑥) =∑𝑓

𝑛

𝑖=0

(𝑥𝑖) ∏
𝑥 − 𝑥𝑗
𝑥𝑖 − 𝑥𝑗

𝑛

𝑗=0,𝑗≠𝑖

.

Here:

 𝐿𝑖(𝑥) ensures that 𝑃𝑛(𝑥𝑖) = 𝑓(𝑥𝑖), satisfying the condition that the polynomial passes

through all the given points.

Step-by-Step Formula

For each known point 𝑥𝑖, the contribution to 𝑃𝑛(𝑥) is proportional to the product of terms of

the form:

𝑥 − 𝑥𝑗
𝑥𝑖 − 𝑥𝑗

, for all 𝑗 ≠ 𝑖.

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

 110 Numerical Methods and Programming in

C++

So, the polynomial 𝑃𝑛(𝑥) is expressed as:

𝑃𝑛(𝑥) =
(𝑥 − 𝑥1)(𝑥 − 𝑥2)⋯ (𝑥 − 𝑥𝑛)

(𝑥0 − 𝑥1)(𝑥0 − 𝑥2)⋯ (𝑥0 − 𝑥𝑛)
𝑓(𝑥0)

+
(𝑥 − 𝑥0)(𝑥 − 𝑥2)⋯ (𝑥 − 𝑥𝑛)

(𝑥1 − 𝑥0)(𝑥1 − 𝑥2)⋯ (𝑥1 − 𝑥𝑛)
𝑓(𝑥1)

+⋯

+
(𝑥 − 𝑥0)(𝑥 − 𝑥1)⋯ (𝑥 − 𝑥𝑛−1)

(𝑥𝑛 − 𝑥0)(𝑥𝑛 − 𝑥1)⋯ (𝑥𝑛 − 𝑥𝑛−1)
𝑓(𝑥𝑛).

To approximate the value of 𝑓(𝑥) at a point 𝑥:

Use the formula to construct the polynomial 𝑃𝑛(𝑥) using the given data points

(𝑥0, 𝑓(𝑥0)), (𝑥1, 𝑓(𝑥1)), … , (𝑥𝑛, 𝑓(𝑥𝑛)).

Substitute 𝑥 into 𝑃𝑛(𝑥) to estimate 𝑓(𝑥).

Let's simplify the provided example step by step for clarity.

EXAMPLE: 31

Given the function values:

𝑓(1) = 3, 𝑓(2) = 9, 𝑓(4) = 15, 𝑓(7) = 20,

we want to calculate 𝑓(5) using Lagrange’s Interpolation Formula.

Solution

For four points, the interpolation formula is:

𝑓(𝑥) =∑𝑓

3

𝑖=0

(𝑥𝑖)𝐿𝑖(𝑥),

where 𝐿𝑖(𝑥) is the Lagrange basis polynomial for each 𝑥𝑖, given by:

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

 111 Numerical Methods and Programming in

C++

𝐿𝑖(𝑥) = ∏
𝑥 − 𝑥𝑗
𝑥𝑖 − 𝑥𝑗

3

𝑗=0,𝑗≠𝑖

.

The four given points are:

𝑥0 = 1, 𝑥1 = 2, 𝑥2 = 4, 𝑥3 = 7.

For 𝐿0(𝑥):

𝐿0(𝑥) =
(𝑥 − 2)(𝑥 − 4)(𝑥 − 7)

(1 − 2)(1 − 4)(1 − 7)
=
(𝑥 − 2)(𝑥 − 4)(𝑥 − 7)

−18
.

For 𝐿1(𝑥):

𝐿1(𝑥) =
(𝑥 − 1)(𝑥 − 4)(𝑥 − 7)

(2 − 1)(2 − 4)(2 − 7)
=
(𝑥 − 1)(𝑥 − 4)(𝑥 − 7)

10
.

For 𝐿2(𝑥):

𝐿2(𝑥) =
(𝑥 − 1)(𝑥 − 2)(𝑥 − 7)

(4 − 1)(4 − 2)(4 − 7)
=
(𝑥 − 1)(𝑥 − 2)(𝑥 − 7)

−18
.

For 𝐿3(𝑥):

𝐿3(𝑥) =
(𝑥 − 1)(𝑥 − 2)(𝑥 − 4)

(7 − 1)(7 − 2)(7 − 4)
=
(𝑥 − 1)(𝑥 − 2)(𝑥 − 4)

90
.

Substitute the function values into the formula:

𝑓(𝑥) = 𝑓(1)𝐿0(𝑥) + 𝑓(2)𝐿1(𝑥) + 𝑓(4)𝐿2(𝑥) + 𝑓(7)𝐿3(𝑥).

𝑓(𝑥) = 3 ⋅
(𝑥 − 2)(𝑥 − 4)(𝑥 − 7)

−18
+ 9 ⋅

(𝑥 − 1)(𝑥 − 4)(𝑥 − 7)

10
+ 15 ⋅

(𝑥 − 1)(𝑥 − 2)(𝑥 − 7)

−18

+ 20 ⋅
(𝑥 − 1)(𝑥 − 2)(𝑥 − 4)

90
.

At 𝑥 = 5, calculate each term:

First term (𝑓(1)𝐿0(5)):

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

 112 Numerical Methods and Programming in

C++

𝐿0(5) =
(5 − 2)(5 − 4)(5 − 7)

−18
=
3 ⋅ 1 ⋅ (−2)

−18
=
−6

−18
=
1

3
.

𝑓(1)𝐿0(5) = 3 ⋅
1

3
= 1.

Second term (𝑓(2)𝐿1(5)):

𝐿1(5) =
(5 − 1)(5 − 4)(5 − 7)

10
=
4 ⋅ 1 ⋅ (−2)

10
=
−8

10
= −0.8.

𝑓(2)𝐿1(5) = 9 ⋅ (−0.8) = −7.2.

Third term (𝑓(4)𝐿2(5)):

𝐿2(5) =
(5 − 1)(5 − 2)(5 − 7)

−18
=
4 ⋅ 3 ⋅ (−2)

−18
=
−24

−18
=
4

3
.

𝑓(4)𝐿2(5) = 15 ⋅
4

3
= 20.

Fourth term (𝑓(7)𝐿3(5)):

𝐿3(5) =
(5 − 1)(5 − 2)(5 − 4)

90
=
4 ⋅ 3 ⋅ 1

90
=
12

90
=
2

15
.

𝑓(7)𝐿3(5) = 20 ⋅
2

15
=
40

15
≈ 2.67.

𝑓(5) = 1 − 7.2 + 20 + 2.67 = 16.47.

The interpolated value is:

𝑓(5) = 16.47

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

 113 Numerical Methods and Programming in

C++

Unit-III

3.1. EIGEN VALUES

Power method to find dominant eigenvalue

Numerical techniques for approximating roots of polynomial equations of high degree are

sensitive to rounding errors. In this section we look at an alternative method for approximating

eigenvalues. As presented here, the method can be used only to find the eigenvalue of A that is

largest in absolute value—we call this eigenvalue the dominant eigenvalue of A. Although this

restriction may seem severe, dominant eigenvalues are of primary interest in many physical

applications.

Definition of Dominant Eigenvalue and Dominant Eigenvector

Let λ1 ,λ 2 , …. And λn be the eigenvalues of an matrix A. is called the dominant eigenvalue of A

if

|λ1 | > |λi |, i= 2,…..n.

The eigenvectors corresponding to are called l dominant eigenvectors of A.

Not every matrix has a dominant eigenvalue. For instance, the matrix

{
1 0
0 −1

}

(with eigen values of λ1=1 and λ2=-1) has no dominant eigenvalue. Similarly, the matrix

{
2 0 0
0 2 0
0 0 1

}

(with eigenvalues of of λ1=2, λ2=2 and λ3=1) has no dominant eigenvalue.

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

 114 Numerical Methods and Programming in

C++

Example 1

Finding a Dominant Eigenvalue Find the dominant eigenvalue and corresponding eigenvectors

of the matrix

A= {
2 −12
1 −5

}

Solution:

The characteristic polynomial of A is λ2 + 3λ+2=(λ+1)(λ+2)

The eigenvalues of A are of λ1=-1 and λ2=-2, of which the dominant one is λ2=-2

the dominant eigenvectors of A are of the form

x= t{
3
1
}, t≠0.

The Power Method Like the Jacobi and Gauss-Seidel methods, the power method for

approximating eigenvalues is iterative. First we assume that the matrix A has a dominant

eigenvalue with corresponding dominant eigenvectors. Then we choose an initial approximation

of one of the dominant eigenvectors of A. This initial approximation must be a nonzero vector in

Rn . Finally we form the sequence given by

X1= Ax0

X2= Ax1 = A(Ax0)=A2 x0

X3= Ax2 = A(A2x0)=A3 x0

Xk= Axk-1 = A(Ak-1x0)=Ak x0

For large powers of k, and by properly scaling this sequence, we will see that we obtain a good

approximation of the dominant eigenvector of A. This procedure is illustrated in Example 2.

Example 2

Approximating a Dominant Eigenvector by the Power Method Complete six iterations of the

power method to approximate a dominant eigenvector of

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

 115 Numerical Methods and Programming in

C++

A= {
2 −12
1 −5

}

Solution:

We begin with an initial nonzero approximation of

X0 = {
1
1
}

We then obtain the following approximations

X1 = Ax0 = [
2 −12
1 −5

] [
1
1
] = [

−10
−4

] -4[
2.50
1.00

]

X2 = Ax1 = [
2 −12
1 −5

] [
−10
−4

] = [
28
10
] 10[

2.80
1.00

]

X3 = Ax2 = [
2 −12
1 −5

] [
28
10
] = [

−64
−22

] -22[
2.91
1.00

]

X4 = Ax3 = [
2 −12
1 −5

] [
−64
−22

] = [
136
46

] 46[
2.96
1.00

]

X5 = Ax4 = [
2 −12
1 −5

] [
136
46

] = [
−280
−94

] -94[
2.98
1.00

]

X6 = Ax7 = [
2 −12
1 −5

] [
−280
−94

] = [
568
190

] 190[
2.99
1.00

]

Note that the approximations in Example 2 appear to be approaching scalar multiples of {
3
1
}.

Example 3

Approximating a Dominant Eigenvector by the Power Method Complete six iterations of the

power method to approximate a dominant eigenvector of

A= {
2 1
0 −4

}

Solution:

We begin with an initial nonzero approximation of

X0 = {
1
1
}

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

 116 Numerical Methods and Programming in

C++

We then obtain the following approximations

X1 = Ax0 = [
2 1
0 −4

] [
1
1
] = [

3
−4
] 5[

0.6
−0.8

]

X2 = Ax1 = [
2 1
0 −4

] [
0.6
−0.8

] = [
0.4
3.2
] 3.22[

0.124
0.994

]

X3 = Ax2 = [
2 1
0 −4

] [
0.124
0.994

] = [
1.242
−3.976

] 4.17[
0.298
−0.953

]

X4 = Ax3 = [
2 1
0 −4

] [
0.298
−0.953

] = [
−0.357
3.812

] 3.83[
−0.093
0.995

]

X5 = Ax4 = [
2 1
0 −4

] [
−0.093
0.995

] = [
0.809
−3.98

] 4.06[
0.199
−0.980

]

X6 = Ax7 = [
2 1
0 −4

] [
0.199
−0.980

] = [
−0.582
3.92

] 3.96[
−0.147
0.989

]

The answer is [
−0.147
0.989

]

Exercise:

1. Find the eigenvalues of the given matrix A. If A has a dominant eigenvalue, find a

corresponding dominant eigenvector.

A= {
−3 0
1 3

}

2. Find the eigenvalues of the given matrix A. If A has a dominant eigenvalue, find a

corresponding dominant eigenvector.

𝐴 = {
−5 0 0
3 7 0
4 −2 3

}

3. Find the eigenvalues of the given matrix A. If A has a dominant eigenvalue, find a

corresponding dominant eigenvector.

𝐴 = {
2 3 1
0 −1 2
0 0 3

}

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

 117 Numerical Methods and Programming in

C++

Jacobi’s method

The Jacobi’s method is used to find all eigenvalues and eigenvectors of a real symmetric

matrix. Let A be a real symmetric matrix. From linear algebra, we know that there exist a real

orthogonal matrix R (if all the eigenvalues are real) such that R-1 AR is a diagonal matrix D.

Again, the diagonal matrix D and the matrix A are similar, and hence diagonal elements of the

matrix D are the eigenvalues of the matrix A and the columns vectors of R are the eigenvectors

of the matrix A.

But, it is not an easy task to find the matrix R. The main principle of Jacobi’s method is

to find the matrix R such that R-1AR becomes a diagonal matrix. For this purpose, a series of

orthogonal transformations R1, R2, . . . are applied.

 Suppose aij be the largest magnitude element among the off-diagonal elements of the

matrix A of order n × n. Let the first orthogonal matrix R1 be defined as follows:

 rij = − sin θ, rji = sin θ, rii = cos θ, rjj = cos θ.

 All other diagonal elements are unity and all other off-diagonal elements are taken as zero.

Let A1 be a sub-matrix of A formed by the elements aii, aij , aji and ajj , i.e.

A1= [
𝑎𝑖𝑖 𝑎𝑖𝑗
𝑎𝑗𝑖 𝑎𝑗𝑗

]

Again, 𝑅1̅̅̅̅ be a submatrix of R1 defined as

𝑅1̅̅̅̅ = [
cos 𝜃 −sin 𝜃
sin 𝜃 𝑐𝑜𝑠𝜃

]

where θ is an unknown quantity.

The matrix R1 is orthogonal. We apply the orthogonal transformation 𝑅1̅̅̅̅ to A1, such that the

matrix 𝑅1̅̅̅̅ -1 A1 𝑅1̅̅̅̅ becomes diagonal. Now,

𝑅1̅̅̅̅ -1 A1 𝑅1̅̅̅̅ = (ajj – aii) sin θ cos θ + aij cos 2θ = 0

That is, tan 2θ = 2aij/(aii – ajj) .

 The value of θ can be obtained from the following equation:

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

 118 Numerical Methods and Programming in

C++

θ = 1/ 2[tan−1 { 2aij/(aii − ajj)}]

This equation gives four values of θ, but, to get smallest rotation, θ must satisfies the inequality

−π/4 ≤ θ ≤ π/4. The equation is valid for all i, j if aii ≠ ajj . If aii = ajj then

θ = {

π

4
𝑖𝑓 𝑎𝑖𝑗 > 0

−
π

4
𝑖𝑓 𝑎𝑖𝑗 < 0

 So for this rotation, the off-diagonal elements sij and sji of 𝑅1̅̅̅̅ -1 A1 𝑅1̅̅̅̅ vanish and the diagonal

elements are updated. Thus, the first diagonal matrix after first rotation is obtained from the

equation D1 = R-1 AR1 . If D1 is a diagonal matrix, then no further rotation is required. In this

case, diagonal elements of D1 are the eigenvalues and column vectors of R1 are the eigenvectors

of A. Otherwise, another rotation (iteration) is required. In the next iteration largest off-diagonal

(in magnitude) element is determined from the matrix D1 and the same method is applied to find

another orthogonal matrix R2 to compute the matrix D2. That is,

D2 = R2 -1 D1 R2 = R2 -1 R-1 AR1 R2 = (R1 R2)-1 A(R1 R2)

Example 1

Find the eigenvalues and eigenvectors of the symmetric matrix

A = [
2 3 1
3 2 1
1 1 3

]

using Jacobi’s method

Solution:

The largest off-diagonal element is 3 at (1, 2), (2, 1) positions.

The rotational angle θ is given by

tan 2θ = 2 a12/(a11 − a22) = 6/ 0 = ∞ i.e., θ = π/ 4 .

 Thus the orthogonal matrix R1 is

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

 119 Numerical Methods and Programming in

C++

R1 = [
𝑐𝑜𝑠 π/ 4 − sin π/ 4 0
𝑠𝑖𝑛 π/ 4 𝑐𝑜𝑠 π/ 4 0

0 0 1

] = [
1/√2 −1/√2 0

1/√2 1/√2 0
0 0 1

]

Then the first rotation yields

D1 = R1
-1 AR1 = [

5 0 1.41421
0 −1 0

1.41421 0 3

]

The largest off-diagonal element of D1 is now 1.41421 situated at (1, 3) position and hence the

rotational angle is

θ = 1/ 2[tan−1{ 2a13/(a11 − a13)}] = 0.477658.

The second orthogonal matrix R2 is

R2 = [
𝑐𝑜𝑠𝜃 0 −𝑠𝑖𝑛𝜃
0 1 0
𝑠𝑖𝑛𝜃 0 𝑐𝑜𝑠𝜃

] = = [
0.88807 0 −0.45970

0 1 0
0.45970 0 0.88807

]

Then second rotation gives

D2 = R2
-1 D1 R2 = [

5.73205 0 0
0 −1 0
0 0 2.26795

]

Thus D2 becomes a diagonal matrix and hence the eigenvalues are 5.73205, −1, 2.26795. The

eigenvectors are the columns of R, where

R= R1R2 = [
0.62796 −0.70711 −0.32506
0.62796 −0.70711 −0.32506
0.45970 0 0.88807

]

Hence, the eigenvalues are 5.73205, −1, 2.26795 and the corresponding eigenvectors are

(0.62796, 0.62796, 0.45970)T , (−0.70711, −0.70711, 0)T , (−0.32506, −0.32506, 0.88807)T

respectively. Note that the eigenvectors are normalized. In this problem, only two rotations are

used. This is less than the expected one. The following example shows that at least six rotations

are needed to diagonalise a symmetric matrix.

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

 120 Numerical Methods and Programming in

C++

Example 2

Find the eigenvalues and eigenvectors of the symmetric matrix

A = [
1 3 2
3 5 1
2 1 4

]

using Jacobi’s method

Solution:

The largest off-diagonal element is 3 at (1, 2), (2, 1) positions.

The rotational angle θ is given by

tan 2θ = 2 a12/(a11 − a22) i.e., θ = -0.491397 .

 Thus the orthogonal matrix R1 is

R1 = [
0.88167 0.47186 0
−0.47186 0.88167 0

0 0 1
]

Then the first rotation yields

D1 = R1
-1 AR1 = [

0.60555 0 1.29149
0 6.60555 1.82539

1.29149 1.82539 4.00

]

The largest off-diagonal element of D1 is now 1.82539 situated at (2, 3)and (3,2) positions and

hence the rotational angle is

θ = 1/ 2[tan−1{ 2a23/(a22 – a23)}] = 0.47668.

The second orthogonal matrix R2 is

R2 = [
1 0 0
0 0.88908 −0.45775
0 0.45775 0.88908

]

Then second rotation gives

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

 121 Numerical Methods and Programming in

C++

D2 = R2
-1 D1 R2 = [

−0.60555 0.59119 1.14824
0.59119 7.54538 0
1.14824 0 3.06017

]

The largest off-diagonal element in magnitude is 1.14824 which is at the position (1, 3) and (3,

1). The rotational angle θ = 1/ 2[tan−1{ 2a31/(a33 – a11)}]= 0.279829

R3 = [
0.96110 0 0.27619

0 1 0
−0.27619 0 0.96110

]

D3 = [
−0.93552 0.56819 0
0.56829 7.54538 0.16328

0 0.16328 3.39014

]

The largest off-diagonal element in magnitude is 0.56829 which is at the position (1, 2) and

(2, 1).

The rotational angle θ = 1/ 2[tan−1{ (2 a12/(a11−a22)}] = −0.066600.

 R4= [
0.99778 0.0000 0
0.56829 0.99778 0

0 0 1
]

D4 = [
−0.93552 0.0000 −0.01087

0 7.58328 0.16292
−0.01087 0.16292 3.39014

]

The largest off-diagonal element in magnitude is 0.16292 which is at the position (2, 3) and (3,

2). The rotational angle θ = 1/ 2[tan−1{ 2a32/(a33−a22)}] = −0.038776.

R5 = [
1 0 0
0 0.99925 −0.03877
0 0.03877 0.99925

]

D5 = [
−0.97342 −0.00042 −0.01086
−0.00042 7.58960 0
−0.01086 0 3.38382

]

R6 = [
1 0 −0.00249
0 1 0

0.00249 0 1
]

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

 122 Numerical Methods and Programming in

C++

D6 = [
−0.97346 −0.00042 −0.00001
−0.00042 7.58960 0
0.00001 0 3.38387

]

This matrix is almost diagonal and hence the eigenvalues are −0.9735, 7.5896, 3.3839 correct up

to four decimal places. The eigenvectors are the columns of

R= R1R2 R3R4 R5R6 = [
0.87115 0.47998 0.01515
−0.39481 −0.70711 −0.54628
−0.27339 0.47329 0.83747

]

That is, the eigenvectors corresponding to the eigenvalues −0.9735, 7.5896, 3.3839 are

respectively (0.87115, −0.39418, −0.27339)T , (0.47998, 0.73872, 0.47329)T and (0.01515,

−0.54628, 0.83747)T .

Exercise:

1: Eigenvalues and Eigenvectors of a 3x3 Symmetric Matrix

Find the eigenvalues and eigenvectors of the following symmetric matrix AAA using the Jacobi

method:

A = [
4 1 2
1 4 0
2 0 3

]

2 : Eigenvalues and Eigenvectors of a 3x3 Symmetric Matrix

Find the eigenvalues and eigenvectors of the following symmetric matrix AAA using the Jacobi

method:

A = [
6 2 1
2 3 0
1 0 5

]

3.2. NUMERICAL DIFFERENTIATION

It is the process of calculating the value of the derivative of a function at some assigned value of

x from the given set of values (xi, yi). To compute dy/dx, we first replace the exact relation y =

f(x) by the best interpolating polynomial y = (x) and then differentiate the latter as many times

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

 123 Numerical Methods and Programming in

C++

as we desire. The choice of the interpolation formula to be used, will depend on the assigned

value of x at which dy/dx is desired.

If the values of x are Equis paced and dy/dx is required near the beginning of the table, we employ

Newton’s forward formula. If it is required near the end of the table, we use Newton’s backward

formula. For values near the middle of the table, dy/dx is calculated by means of Stirling’s or

Bessel’s formula. If the values of x are not equispaced, we use Lagrange’s formula or Newton’s

divided difference formula to represent the function.

Hence corresponding to each of the interpolation formulae, we can derive a formula for finding

the derivative.

Formulae for Derivatives

Consider the function y=f(x) which is tabulated for the values (xi= x0+ih), i = 0, 1, 2, ... n.

Derivatives using Newton’s forward difference formula

Newton’s forward interpolation formula is

 y=y0 + pΔ𝑦0 +
𝑝(𝑝−1)

2!
 Δ2𝑦0+

𝑝(𝑝−1)(𝑝−2)

3!
 Δ3𝑦0+…

Differentiating both sides w.r.t. p, we have

𝑑𝑦

dp
 = Δ𝑦0+

(2𝑝−1)

2!
 Δ2𝑦0 +

3𝑝2−6𝑝+2

3!
 Δ3𝑦0 +…

Since p=
(𝑥 −𝑥0)

h

Therefore
𝑑𝑦

dx
 =

1

h

Now
𝑑𝑦

𝑑𝑥
 =

𝑑𝑦

dp
.
𝑑𝑝

dx
 =
1

h
[Δ𝑦0 +

(2𝑝−1)

2!
 Δ2𝑦0 +

3𝑝2−6𝑝+2

3!
 Δ3𝑦0 +⋯] (1)

At 𝑥 𝑥0 , p 0. Hence putting p 0,

𝑑𝑦

dx
 =

1

h
[Δ𝑦0 +

1

2
 Δ2𝑦0 +

1

3
 Δ3𝑦0 +⋯] (2)

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

 124 Numerical Methods and Programming in

C++

Again differentiating (1) w.r.t x, we get

𝑑2𝑦

𝑑𝑥2
 =

𝑑

dp
(
𝑑𝑦

𝑑𝑝
)
𝑑𝑝

dx

 =
1

h
[
2

2!
Δ2𝑦0 +

6𝑝−6

3!
 Δ3𝑦0 +

12𝑝2−36𝑝2−36𝑝+22

4!
Δ4𝑦0 +⋯]

1

h

Putting p=0, we obtain

𝑑2𝑦

𝑑𝑥2
 =

1

ℎ2
[Δ2𝑦0 − Δ

3𝑦0 +
11

12
 Δ4𝑦0 − ⋯] (3)

Similarly

𝑑3𝑦

𝑑𝑥3
 =

1

ℎ3
[Δ3𝑦0 −

3

 2
 Δ4𝑦0 + ⋯] (4)

Derivatives using Newton’s backward difference formula

Newton’s backward interpolation formula is

y=yn + p∇𝑦𝑛 +
𝑝(𝑝+1)

2!
 ∇2𝑦𝑛+

𝑝(𝑝+1)(𝑝+2)

3!
 ∇3𝑦𝑛+…

Differentiating both sides w.r.t. p, we have

𝑑𝑦

dp
 = ∇𝑦𝑛+

(2𝑝−1)

2!
 ∇2𝑦𝑛 +

3𝑝2−6𝑝+2

3!
 ∇3𝑦𝑛 +…

Since p=
(𝑥 −𝑥𝑛)

h

Therefore
𝑑𝑦

dx
 =

1

h

Now
𝑑𝑦

𝑑𝑥
 =

𝑑𝑦

dp
.
𝑑𝑝

dx
 =
1

h
[∇𝑦𝑛 +

(2𝑝+1)

2!
 ∇2𝑦𝑛 +

3𝑝2−6𝑝+2

3!
 ∇3𝑦𝑛 +⋯] (1)

At 𝑥 𝑥𝑛 , p 0. Hence putting p 0,

𝑑𝑦

dx
 =

1

h
[∇𝑦𝑛 +

1

2
 ∇2𝑦𝑛 +

1

3
 ∇3𝑦𝑛 +⋯] (2)

Again differentiating (1) w.r.t x, we get

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

 125 Numerical Methods and Programming in

C++

𝑑2𝑦

𝑑𝑥2
 =

𝑑

dp
(
𝑑𝑦

𝑑𝑝
)
𝑑𝑝

dx

 =
1

h
[
2

2!
∇2𝑦𝑛 +

6𝑝−6

3!
 ∇3𝑦𝑛 +

12𝑝2−36𝑝2−36𝑝+22

4!
∇4𝑦𝑛 +⋯]

1

h

Putting p=0, we obtain

𝑑2𝑦

𝑑𝑥2
 =

1

ℎ2
[∇2𝑦𝑛 + ∇

3𝑦𝑛 +
11

12
 ∇4𝑦𝑛 − ⋯] (3)

Similarly

𝑑3𝑦

𝑑𝑥3
 =

1

ℎ3
[∇3𝑦𝑛 +

3

 2
 ∇4𝑦𝑛 + ⋯] (4)

Example 1

Given that

x 1.0 1.1 1.2 1.3 1.4 1.5 1.6

y 7.989 8.4403 8.781 9.129 9.451 9.750 10.031

Find
𝑑𝑦

dx
 and

𝑑2𝑦

𝑑𝑥2
 at x=1.6

Solution

The difference table is:

x y 𝚫 𝚫𝟐 𝚫𝟑 𝚫𝟒 𝚫𝟓 𝚫𝟔

1.0 7.989

 0.414

1.1 8.403 -0.036

 0.378 0.006

1.2 8.781 -0.030 -0.002

 0.348 0.004 0.001

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

 126 Numerical Methods and Programming in

C++

1.3 9.129 -0.026 -0.001 0.002

 0.322 0.003 0.003

1.4 9.451 -0.023 0.001

 0.299 0.005

1.5 9.750 -0.018

 0.281

1.6 10.031

The backward difference formula is

𝑑𝑦

dx
 =

1

h
[∇𝑦𝑛 +

1

2
 ∇2𝑦𝑛 +

1

3
 ∇3𝑦𝑛 +⋯]

and

𝑑2𝑦

𝑑𝑥2
 =

1

ℎ2
[∇2𝑦𝑛 + ∇

3𝑦𝑛 +
11

12
 ∇4𝑦𝑛 − ⋯]

Here h 0.1, 𝑥𝑛 1.6, ∇𝑦𝑛 0.281, ∇2𝑦𝑛 – 0.018 etc.

Putting these values in (i) and (ii), we get

𝑑𝑦

dx
 =

1

0.1
[0.281 +

1

2
 (−0.012) +

1

3
 (0.005) +

1

4
 (0.002) +

1

5
 (0.003) +

1

6
 (0.002)]

 =2.75

𝑑2𝑦

𝑑𝑥2
 =

1

(0.1)2
[(−0.018) + 0.005 +

11

12
 (0.002) +

5

6
 (0.003) +

137

180
 (0.002)]

 =-0.715

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

 127 Numerical Methods and Programming in

C++

Example 2

Given Table

x 1 2 3 4 5

y 1 4 9 16 25

Solution

The difference table is:

x y 𝚫 𝚫𝟐 𝚫𝟑

1 1

 3

2 4 2

 5 0

3 9 2

 7 0

4 16 2

 9

5 25

The backward difference formula is

y=yn + p∇𝑦𝑛 +
𝑝(𝑝+1)

2!
 ∇2𝑦𝑛+

𝑝(𝑝+1)(𝑝+2)

3!
 ∇3𝑦𝑛+…

Here h 1, x 6

𝑝 =
𝑥 − 𝑥𝑛
ℎ

 =
6−5

1
 = 1

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

 128 Numerical Methods and Programming in

C++

Putting these values, we get

𝑦 =[25 + 9 +
2

2
 2]

 =36

Example 3

Given Table

x 1 2 3 4 5

y 1 8 27 64 125

Solution

The difference table is:

x y 𝚫 𝚫𝟐 𝚫𝟑 𝚫𝟒

1 1

 7

2 8 12

 19 6

3 27 18 0

 37 6

4 64 24

 61

5 125

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

 129 Numerical Methods and Programming in

C++

The backward difference formula is

y=yn + p∇𝑦𝑛 +
𝑝(𝑝+1)

2!
 ∇2𝑦𝑛+

𝑝(𝑝+1)(𝑝+2)

3!
 ∇3𝑦𝑛+…

Here h 1, x 6

] 𝑝 =
𝑥−𝑥𝑛

ℎ

 =
6−5

1
 = 1

Putting these values, we get

𝑦 =[125 + 61 +
2

2
 24 +

6

6
 6 +]

 =216

Exercise

1. The value of table for x and y

x 1891 1901 1911 1921 1931

y 46 66 81 93 101

2. For the following values of x and y, find the first derivative at x 4

x 1 2 4 8 10

y 0 1 5 21 27

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

 130 Numerical Methods and Programming in

C++

3. For the following values of x and y, find the first derivative at x 0.4

x 0.1 0.2 0.3 0.4

y 1.10517 1.22140 1.34986 1.49182

Derivatives using central difference formula

Central difference formula is

 yp=y0 + pΔ𝑦0 +
𝑝(𝑝−1)

2!

Δ2𝑦−1 + Δ
2𝑦0

2
 +(𝑝 −

1

2
) (

𝑝(𝑝−1)

3!
) Δ3𝑦−1+…

Differentiating both sides w.r.t. p, we have

Since p=
(𝑥 −𝑥0)

h

Therefore
𝑑𝑦

dx
 =

1

h

Now
𝑑𝑦

𝑑𝑥
 =

𝑑𝑦

dp
.
𝑑𝑝

dx
 =
1

h
[Δ𝑦0 +

(2𝑝−1)

2!

Δ2𝑦−1 + Δ

2𝑦0

2
 +

3𝑝2−2𝑝+
1

2

3!
 Δ3𝑦−1 +⋯] (1)

At 𝑥 𝑥0 , p 0. Hence putting p 0,

𝑑𝑦

dx
 =

1

h
[Δ𝑦0 +

1

2
 (
Δ2𝑦−1 + Δ

2𝑦0

2
) +

1

12
 Δ3𝑦−1 +⋯] (2)

Similarly

𝑑2𝑦

𝑑𝑥2
 =

1

ℎ2
[(
Δ2𝑦−1 + Δ

2𝑦0

2
) −

1

2
 Δ3𝑦−1 −

1

12
(
Δ4𝑦−2 + Δ

4𝑦0

2
)…] (3)

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

 131 Numerical Methods and Programming in

C++

Example 1

x 1.0 1.5 2.0 2.5 3.0

y 10.2400 12.3452 15.2312 17.5412 19.3499

i x y 𝚫 𝚫𝟐 𝚫𝟑

-2 1.0 10.2400

 2.1052

-1 1.5 12.3452 0.7808

 2.8860 -1.3568

0 2.0 15.2312 -0.5760

 2.3100 0.0747

1 2.5 17.5412 -0.5013

 1.8087

2 3.0 19.3499

Here x=1.55. Let x0=2.0. Therefore,

𝑝 =
1.55−2.0

0.5
= -0.9

 yp=
𝑦0+𝑦𝑛

2!
 + (𝑝 −

1

2
)Δ𝑦0 +

𝑝(𝑝−1)

2!

Δ2𝑦−1 + Δ
2𝑦0

2
 +(𝑝 −

1

2
) (

𝑝(𝑝−1)

3!
) Δ3𝑦−1+…

 =
15.2812+17.5412

2
+ (-0.9)2.31 +

 (−0.9)(−1.9)

2!

 (−0.5760−0.5013)

2
 +

1

6
 (-1.4)(-0.9)(-1.9)(0.0747)

 = 13.5829

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

 132 Numerical Methods and Programming in

C++

Example 2

Use central difference method to find the y from given table

x 20 24 28 32

y 2854 3162 3544 3992

Solution

i x y 𝚫 𝚫𝟐 𝚫𝟑

-2 20 2854

 308

-1 24 3162 74

 382 -8

0 28 3544 66

 448

1 32 3992

𝑝 =
25−24

4
= 0.25

 yp=
𝑦0+𝑦𝑛

2!
 + (𝑝 −

1

2
)Δ𝑦0 +

𝑝(𝑝−1)

2!

Δ2𝑦−1 + Δ
2𝑦0

2
 +(𝑝 −

1

2
) (

𝑝(𝑝−1)

3!
) Δ3𝑦−1+…

 =
3162+3544

2
+ (-0.25)382 +

 (0.25)(−0.75)

2!

 74+66

2
 +

1

6
 (-0.25)(0.25)(-0.75)(-8)

Y0.25 = 3250.875

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

 133 Numerical Methods and Programming in

C++

Example 3

Use central difference method to find the y for x = 9 from the given table

x 0 4 8 12 16

y 14 24 32 35 40

Solution

x y 𝚫 𝚫𝟐 𝚫𝟑 𝚫𝟒

0 14

 10

4 24 -2

 8 -3

8 32 -5 10

 5 7

12 35 2

 3

16 40

𝑝 =
9−8

4
= 0.25

yp=
𝑦0+𝑦𝑛

2!
 + (𝑝 −

1

2
)Δ𝑦0 +

𝑝(𝑝−1)

2!

Δ2𝑦−1 + Δ
2𝑦0

2
 +(𝑝 −

1

2
) (

𝑝(𝑝−1)

3!
) Δ3𝑦−1+…

 =
32+35

2
+ (-0.25)3 +

 (0.25)(−0.75)

2!

 −5+2

2
 +

1

6
 (-0.25)(0.25)(-0.75)(7)

y = 31.21

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

 134 Numerical Methods and Programming in

C++

Exercise

1. Find dy/dx at x 1 from the following table by constructing a central difference table:

x 0.7 0.8 0.9 1.0 1.1 1.2 1.3

y 0.644218 0.717356 0.783327 0.841471 0.891471 0.932039 0.963558

2. Find dy/dx at x 0.04 from the following table by constructing a central difference table:

x 0.01 0.02 0.03 0.04 0.05 0.06

y 0.1023 0.1047 0.1071 0.1096 0.1122 0.1148

3. Find dy/dx at x 7.5 from the following table by constructing a central difference table:

x 6 7 8 9

y 1.556 1.690 1.908 2.158

Taylor series:

The Taylor series of a real or complex-valued function f (x), that is infinitely

differentiable at a real or complex number a, is the power series

Example 1

Determine the Taylor series at x=0 for f(x) = ex

Solution:

Given: f(x) = ex

Differentiate the given equation,

f’(x) = ex

https://en.wikipedia.org/wiki/Real-valued_function
https://en.wikipedia.org/wiki/Complex-valued_function
https://en.wikipedia.org/wiki/Infinitely_differentiable_function
https://en.wikipedia.org/wiki/Infinitely_differentiable_function
https://en.wikipedia.org/wiki/Real_number
https://en.wikipedia.org/wiki/Complex_number
https://en.wikipedia.org/wiki/Power_series

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

 135 Numerical Methods and Programming in

C++

f’’(x) =ex

f’’’(x) = ex

At x=0, we get

f’(0) = e0 =1

f’’(0) = e0=1

f’’’(0) = e0 = 1

When Taylor series at x= 0, then the Maclaurin series is

f(x)=f(0)+f′(0)x+f”(0)2!x2+f”‘(0)3!x3+….

𝑒𝑥 = 1+
𝑥

1!
+
𝑥2

2!
+
𝑥3

3!
+⋯ , −∞ < 𝑥 < ∞

Therefore, 𝑒𝑥 = 1 +
𝑥

1!
+

𝑥2

2!
+

𝑥3

3!
+⋯ , −∞ < 𝑥 < ∞

Example 2

Evaluate the Taylor Series for f (x) = cos (x) for x = 0.

Solution:

We need to take the derivatives of the cos x and evaluate them at x = 0.

f(x) = cos x ⇒ f(0) = 1

f’(x) = -sin x ⇒ f’(0) = 0

f’’(x) = -cos x ⇒ f’’(0) = -1

f’’’(x) = sin x ⇒ f’’’(0) = 0

f’’’’(x) = cos x ⇒ f’’’’(4) = 1

f(5)(x) = -sin x ⇒ f(5) (0) = 0

f(6) (x) = -cos x ⇒ f(6)(0) = -1

Therefore, according to the Taylor series expansion;

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

 136 Numerical Methods and Programming in

C++

𝑐𝑜𝑠 𝑥 = 1 −
𝑥2

2!
+
𝑥4

4!
−
𝑥6

6!
+⋯,

Example 3

Evaluate the Taylor Series for f (x) = x3 − 10x2 + 6 at x = 3.

Solution:

First, we will find the derivatives of the given function.

f(x) = x3 − 10x2 + 6 ⇒ f(3) = -57

f’(x) = 3x2 − 20x ⇒ f’(3) = 33

f’’(x) = 6x – 20 ⇒ f’’(3) = -2

f’’’(x) = 6 ⇒ f’’’(3) = 6

f’’’’(x) = 0

= -57-33(x-3)-(x-3)2+(x-3)3

Exercise

1.Write the taylor Series of exponential

2. Use the formula for the coefficients in terms of derivatives to give the Taylor series of f(z)=ez

around z=0.

3. Expand f(z)=z8e3z in a Taylor series around z=0.

3.3. NUMERICAL INTEGRATION

Newton-cotes formula

Let 𝐼 = ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎

Where f(x) takes the values y0 , y1 , y2 , yn for x x0 , x1 , x2 , xn . Let us divide the interval

(a, b) into n sub-intervals of width h so that x0 a, x1 x0 h, x2 x0 2h, .xn x0 nh b.

Then

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

 137 Numerical Methods and Programming in

C++

 𝐼 = ∫ 𝑓(𝑥)𝑑𝑥
𝑥0−𝑛ℎ
𝑥0

 = h∫ 𝑓(𝑥 + 𝑟ℎ)𝑑𝑟
𝑛

0
, Putting x=x0 +rh, dx=hdr

 = h∫ 𝑦0 + 𝑟
𝑛

0
 Δ𝑦0+

𝑟(𝑟−1)

2!
Δ2𝑦0 +

𝑟(𝑟−1)(𝑟−2)

3!
Δ3𝑦0+. ..

Integrating term by term, we obtain

 ∫ 𝑓(𝑥)𝑑𝑥
𝑥0−𝑛ℎ
𝑥0

 = nh [𝑦0 +
𝑛

2
 Δ𝑦0 +

𝑛(2𝑛−3)

12
 Δ2𝑦0 +

𝑛(𝑛−2)2

12
 Δ3𝑦0…]

This is known as Newton-Cotes quadrature formula. From this gen eral formula, we deduce the

following important quadrature rules by taking n 1, 2, 3,

I. Trapezoidal rule. Putting n 1 in (1) and taking the curve through (x0 , y0) and (x1 ,

y1) as a straight line i.e., a polynomial of first order so that differences of order higher

than first become zero, we get

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

 138 Numerical Methods and Programming in

C++

∫ 𝑓(𝑥)𝑑𝑥
𝑥0+ℎ
𝑥0

 = ℎ (𝑦0 +
1

2
Δ𝑦0)=

h

2
(𝑦0 + 𝑦1)

∫ 𝑓(𝑥)𝑑𝑥
𝑥0+2ℎ
𝑥0+ℎ

 = ℎ (𝑦1 +
1

2
Δ𝑦1)=

h

2
(𝑦1 + 𝑦2)

Adding these two integrals, we obtain

∫ 𝑓(𝑥)𝑑𝑥
𝑥0+𝑛ℎ
𝑥0

 =
h

2
[(𝑦0 + 𝑦𝑛) + 2(𝑦1 + 𝑦2+ +𝑦𝑛−1)

This is known as the trapezoidal rule.

Example 1

Approximate the area under the curve y = f(x) between x =0 and x=8 using Trapezoidal Rule

with n = 4 subintervals. A function f(x) is given in the table of values.

Solution

 The Trapezoidal Rule formula for n= 4 subintervals is given as:

T4 =(Δx/2)[f(x0)+ 2f(x1)+ 2f(x2)+2f(x3) + f(x4)]

Here the subinterval width Δx = 2.

Now, substitute the values from the table, to find the approximate value of the area under the

curve.

A≈ T4 =(2/2)[3+ 2(7)+ 2(11)+2(9) + 3]

X 0 2 4 6 8

f(x) 3 7 11 9 3

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

 139 Numerical Methods and Programming in

C++

A≈ T4 = 3 + 14 + 22+ 18+3 = 60

Therefore, the approximate value of area under the curve using Trapezoidal Rule is 60.

Example 2

Approximate the area under the curve y = f(x) between x =-4 and x= 2 using Trapezoidal Rule

with n = 6 subintervals. A function f(x) is given in the table of values.

Solution

The Trapezoidal Rule formula for n= 6 subintervals is given as:

T6 =(Δx/2)[f(x0)+ 2f(x1)+ 2f(x2)+2f(x3) + 2f(x4)+2f(x5)+ f(x6)]

Here the subinterval width Δx = 1.

Now, substitute the values from the table, to find the approximate value of the area under the

curve.

A≈ T6 =(1/2)[0+ 2(4)+ 2(5)+2(3) + 2(10)+2(11) +2]

A≈ T6 =(½) [8 + 10 + 6+ 20 +22 +2] = 68/2 = 34

Therefore, the approximate value of area under the curve using Trapezoidal Rule is 34.

Example 3

Using trapezoidal method find ∫30ex2dx with step size h = 0.5

Now using trapezoidal method,

 T4 =(Δx/2)[f(x0)+ 2f(x1)+ 2f(x2)+2f(x3) + f(x4)]

=0.52[8104.084+2[586.098]]

=0.52[9276.28]

= 2319.07

x -4 -3 -2 -1 0 1 2

f(x) 0 4 5 3 10 11 2

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

 140 Numerical Methods and Programming in

C++

Error Estimation

E ≤
(𝑏 − 𝑎)2

12n2
 [max |f ''(x)|]

Exercise

1. Find out the area under the curve with help of the Trapezoid Rule Formula that passes

through the following points

X 0 0.5 1 1.5

Y 5 6 9 11

2. With the help of the Trapezoidal rule, the formula finds the area under the curve y = X sq

between x = 0 and x = 4 using the step size of 1

Given, y = x2

h = 1

Let’s find out the value of y with help of this y = x2

X 0 1 2 3 4

Y 0 1 4 9 16

3. Find the area enclosed by the function f(x) between x = 0 to x = 3 with 3 intervals. f(x) = x

II. Simpson’s one-third rule.

Putting n 2 in (1) above and taking the curve through (x0 , y0), (x1 , y1), and (x2 , y2) as a

parabola i.e., a polynomial of the second order so that differences of order higher than the second

vanish, we get

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

 141 Numerical Methods and Programming in

C++

∫ f
𝑏

𝑎

(𝑥)𝑑𝑥 ≈ 𝑆𝑛 =
Δ𝑥

3
[𝑓(𝑥0) + 4𝑓(𝑥1) + 2𝑓(𝑥2) + 4𝑓(𝑥3) + ⋯+ 2𝑓(𝑥𝑛−2) + 4𝑓(𝑥𝑛−1) + 𝑓(𝑥𝑛)]

This is known as the Simpson’s one-third rule or simply Simpson’s rule and is most commonly

used.

Error Estimation

E ≤
(𝑏 − 𝑎)5

180n4
 [max |f (4)(x)|]

Example 1

1. Evaluate ∫0
1exdx, by Simpson’s ⅓ rule.

Let us divide the range [0, 1] into six equal parts by taking h = 1/6.

If x0 = 0 then y0 = e0 = 1.

If x1 = x0 + h = ⅙, then y1 = e1/6 = 1.1813

If x2 = x0 + 2h = 2/6 = 1/3 then, y2 = e1/3 = 1.3956

If x3 = x0 + 3h = 3/6 = ½ then y3 = e1/2= 1.6487

If x4 = x0 + 4h = 4/6 ⅔ then y4 = e2/3 = 1.9477

If x5 = x0 + 5h = ⅚ then y5 = e5/6 = 2.3009

If x6 = x0 + 6h = 6/6 = 1 then y6 = e1 = 2.7182

We know by Simpson’s ⅓ rule;

∫a
b f(x) dx = h/3 [(y0 + yn) + 4(y1 + y3 + y5 + …. + yn-1) + 2(y2 + y4 + y6 + ….. + yn-2)]

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

 142 Numerical Methods and Programming in

C++

Therefore,

∫0
1exdx = (1/18) [(1 + 2.7182) + 4(1.1813 + 1.6487 + 2.3009) + 2(1.39561 + 1.9477)]

= (1/18)[3.7182 + 20.5236 + 6.68662]

= 1.7182 (approx.)

Example 2

Find the solution using Simpson’s 1/3 rule

x 0.0 0.1 0.2 0.3 0.4

f(x) 1.0000 0.9975 0.9900 0.9776 0.8604

Solution:

We know that to use Simpson’s ⅓ rule, the number of subintervals has to be even.

We have, a = 0.0, b = 0.4, n = 4

First we find that, h=
𝑏−𝑎

𝑛
=0.4−0.04=0.44=0.1

 h=
𝑏−𝑎

𝑛
=0.4−0.04=0.44=0.1.

Now putting all these values in the Simpson’s ⅓ rule formula, we get

∫ 𝑓
𝑏

𝑎
(x)dx=h/3[f(x0)+f(xn)+4×(f(x1)+f(x3)+…)+2×(f(x2)+f(x4)+…)]

=
0.1

3
×[f(0.0)+f(0.4)+4×(f(0.1)+f(0.3))+2×f(0.2)]

0.1

3
×[1+0.8604+4×(0.9975+0.9776)+2×0.99]

=
0.1

3
[1+0.8604+4×(0.9975+0.9776)+2×0.99]

=
0.1

3
[1+0.8604+7.9004+1.98]=0.13×[1+0.8604+7.9004+1.98]

=
0.1

3
[11.7408=0.13×11.7408]

=0.39136

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

 143 Numerical Methods and Programming in

C++

Example 3

Find the solution using Simpson’s 1/3 rule

x 4 4.2 4.4 4.6 4.8 5.0 5.2

f(x) 1.3863 1.4351 1.4816 1.5261 1.5686 1.6094 1.6487

Solution:

We have to use Simpson’s ⅜ rule, so for that, the number of subintervals must be a multiple of 3.

So we have a=4, b=5.2, n=6

Therefore, h=
𝑏−𝑎

𝑛
=5.2−46=0.2

h=
𝑏−𝑎

𝑛
=5.2−46=0.2

Now putting these values in the Simpson’s ⅜ rule formula.

∫ 𝑓
𝑏

𝑎
(x)dx=3h/8[f(x0)+f(xn)+2×(f(x3)+f(x6)+…)+3×(f(x1)+f(x2)+f(x4)+…)]

∫ 𝑓
𝑏

𝑎
(x)dx=3h/8[f(x0)+f(xn)+2×(f(x3)+f(x6)+…)+3×(f(x1)+f(x2)+f(x4)+…)]

=
3×0.2

8
[f(4)+f(5.2)+2×f(4.6)+3×(f(4.2)+f(4.4)+f(4.8)+f(5.0))]=3×0.28[f(4)+f(5.2)+2×f(4.6)+3×(

f(4.2)+f(4.4)+f(4.8)+f(5.0))]

=
3×0.2

8
[[1.3863+1.6487+(2×1.5261)+3×(1.4351+1.4816+1.5686+1.6094)]=0.68[1.3863+1.64

87+(2×1.5261)+3×(1.4351+1.4816+1.5686+1.6094)]

=
0.6

8
[1.3863+1.6487+3.0522+18.2841]=0.68[1.3863+1.6487+3.0522+18.2841]

=
0.6

8
×24.3713=0.68×24.3713

=1.8278475

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

 144 Numerical Methods and Programming in

C++

Exercise

1. Evaluate the integral ∫ (
4

0
x2+1) dx using Simpson's 1/3 rule with 4 subintervals.

2. Approximate∫
1

𝑥

2

1
dx using Simpson's 1/3 rule with 6 subintervals.

3. Use Simpson's 1/3 rule to find the value of ∫ 𝑠
𝜋

0
in(x) dx taking 4 subintervals.

III. Simpson’s 3 / 8 Rule

The Simpson’s 3 / 8 rule is another method that can be used for numerical integration.

This numerical method is entirely based on the cubic interpolation instead of the quadratic

interpolation. This rule can be represented by the formula that is mentioned below.

∫a
b f(x) dx = 3h/8 [(y0 + yn) + 3(y1 + y2 + y4 + y5 + …. + yn-1) + 2(y3 + y6 + y9 + ….. + yn-3)]

Example 1

1. Find Solution using Simpson's 3/8 rule

x 1.4 1.6 1.8 2 2.2

y 4.0552 4.953 6.0436 7.3891 9.025

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

 145 Numerical Methods and Programming in

C++

Solution,

∫ydx=
3ℎ

8
[(y0+y4)+2(y3)+3(y1+y2)]

∫ydx=
3×0.2

8
[(4.0552+9.025)+2×(7.3891)+3×(4.953+6.0436)]

∫ydx=
3×0.2

8
[(4.0552+9.025)+2×(7.3891)+3×(10.9966)]

∫ydx=4.5636

Solution by Simpson's 3/8 Rule is 4.5636

Example 2

Find Solution using Simpson's 3/8 rule

x 0 0.1 0.2 0.3 0.4

y 1 0.9975 0.99 0.9776 0.8604

Solution,

∫ydx=
3ℎ

8
[(y0+y4)+2(y3)+3(y1+y2)]

∫ydx=
3×0.1

8
[(1+0.8604)+2×(0.9776)+3×(0.9975+0.99)]

∫ydx=
3×0.1

8
[(1+0.8604)+2×(0.9776)+3×(1.9875)]

∫ydx=0.36668

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

 146 Numerical Methods and Programming in

C++

Solution by Simpson's 3/8 Rule is 0.36668

Example 3

Find Solution of an equation 1/x using Simpson's 3/8 rule x1 = 1 and x2 = 2 Step value (h) = 0.25

x 1 1.25 1.5 1.75 2

y 1 0.8 0.6667 0.5714 0.5

Solution,

∫ydx=
3ℎ

8
[(y0+y4)+2(y3)+3(y1+y2)]

∫ydx=
3×0.25

8
[(1+0.5)+2×(0.5714)+3×(0.8+0.6667)]

∫ydx=
3×0.25

8
[(1+0.5)+2×(0.5714)+3×(1.4667)]

∫ydx=0.6603

Solution by Simpson's 38 Rule is 0.6603

Exercise

1. Find Solution of an equation 2x^3-4x+1 using Simpson's 3/8 rule x1 = 2 and x2 = 4

Step value (h) = 0.5

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

 147 Numerical Methods and Programming in

C++

x 2 2.5 3 3.5 4

y 9 22.25 43 72.75 113

2. Approximate∫
1

𝑥

2

1
dx using Simpson's 3/8 rule with 6 subintervals.

3. Use Simpson's 3/8 rule to find the value of ∫ 𝑠
𝜋

0
in(x) dx taking 6 subintervals.

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

 148 Numerical Methods and Programming in

C++

UNIT – IV

4.1. Ordinary Differential Equation:

Suppose we want to find the numerical solution of the equation

𝑑𝑦

𝑑𝑥
= 𝑓(𝑥, 𝑦)………(1)

With 𝑦(𝑥0) = 𝑦0

y(x) can be expanded about the point 𝑥0 in taylor series as

𝑦(𝑥) = 𝑦(𝑥0) +
(𝑥 − 𝑥0)

1!
 [𝑦 ,(𝑥)]𝑥0 +

(𝑥 − 𝑥0)
2

2!
[𝑦′(𝑥)]𝑥0 +⋯…….

𝑦(𝑥) = 𝑦(𝑥0) +
(𝑥 − 𝑥0)

1!
𝑦0′ +

(𝑥 − 𝑥0)
2

2!
𝑦0′′ + ⋯…….

Putting x= x1 = x0+h we have

𝑦(𝑥1) = 𝑦0 +
ℎ

1!
𝑦0
, +

ℎ2

2!
𝑦0
,, +

ℎ3

3!
𝑦0
,,, +

 In this 𝑦0
, , 𝑦0

,,, 𝑦0
,,,
 can be found by differentiating equation (1)

Thus

𝑦1 = 𝑦0 +
ℎ

1!
𝑦0
, +

ℎ2

2!
𝑦0
,, +

ℎ3

3!
𝑦0
,,, +⋯ . (2)

Once 𝑦1 has been calculated

 𝑦1
, , 𝑦1

,,, 𝑦2
,,,
 can be found from equation (2)

Similarly expanding y(x) about the point x1 we get

𝑦3 = 𝑦1 +
ℎ

1!
𝑦1
, +

ℎ2

2!
𝑦1
,, +

ℎ3

3!
𝑦1
,,, +⋯ . (3)

In general expanding y(x) at a point xm we get

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

 149 Numerical Methods and Programming in

C++

𝑦𝑚+1 = 𝑦𝑚 +
ℎ

1!
𝑦𝑚
, +

ℎ2

2!
𝑦𝑚
,, +

ℎ3

3!
𝑦𝑚
,,, +⋯ . (4)

Problems

1. Solve
𝑑𝑦

𝑑𝑥
= 𝑥 + 𝑦 given y(1) = 0 and get y(1.1), y(1.2) by taylor series method. Compare your

result with the explicit solution.

Given: 𝑥0 = 1, 𝑦0=0 h=0.1

𝑦′ = 𝑥 + 𝑦

𝑦′′ = 1 + 𝑦′

𝑦′′′ = 𝑦′′

𝑦𝑖𝑣 = 𝑦′′′

𝑦0 = 0

𝑦𝑜
′ = 𝑥0 + 𝑦𝑜 = 1 + 0 = 1

𝑦𝑜
′′ = 1 + 𝑦𝑜

′ = 1+ 1 = 2

𝑦𝑜
′′′ = 𝑦𝑜

′′ = 2

𝑦𝑜
𝑖𝑣 = 2

By Taylor Series

𝑦1 = 𝑦0 +
ℎ

1!
𝑦0
, +

ℎ2

2!
𝑦0
,, +

ℎ3

3!
𝑦0
,,, +

ℎ4

4!
𝑦0
𝑖𝑣

𝑦(1.1) = 0.1 + 0.01 + 0.00033+0.00000833+0.000000166

𝑦(1.1) = 0.11033847

Now take 𝑥0 = 1.1 ℎ = 0.1

𝑦2 = 𝑦1 +
ℎ

1!
𝑦1
, +

ℎ2

2!
𝑦1
,, +

ℎ3

3!
𝑦1
,,, +

ℎ4

4!
𝑦0
𝑖𝑣

𝑦1 = 0.11033847

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

 150 Numerical Methods and Programming in

C++

𝑦1
′ = 𝑥1 + 𝑦1 = 1.21033847

𝑦1
′′ = 1+ 𝑦1

′ = 2.21033847

𝑦1
′′′ = 𝑦1

′′ = 𝑦𝑜
𝑖𝑣 = 𝑦𝑜

𝑣 = 2.21033847

𝑦2 = 𝑦(1.2) = 0.11033847 +
0.1

1
(1.21033847) +

(0.1)2

2
(2.21033847)+

(0.1)3

2
(2.21033847)+

(0.1)4

2
(2.21033847)

 =0.11033847+0.121033847+2.21033847(0.005+0.00166666+0.00000008333)

𝑦(1.2) = 0.24280160

Exact solution

𝑑𝑦

𝑑𝑥
= 𝑥 + 𝑦

𝑦 = −𝑥 − 1 + 2𝑒𝑥−1

𝑦(1.1) = −1.1 − 1 + 2𝑒0.1 = 0.11034

𝑦(1.2) = −1.2 − 1 + 2𝑒0.2 = 0.2428

X Taylor

result

Exact result

1.1 0.11033847 0.11034

1.2 0.24280160 0.2428

2. Using Taylor series method find corrected to 4 decimal places the value of 𝑦(0.1) given
𝑑𝑦

𝑑𝑥
=

𝑥2 + 𝑦2 and y(0)=1, h=0.

Given 𝑦(𝑥𝑜) = 𝑦0 𝑦(0) = 1 = 0.

𝑥0 = 0 𝑦0 = 1 ℎ = 0.1

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

 151 Numerical Methods and Programming in

C++

𝑥1 = 0.1 𝑦1 = 𝑦(0.1) =? ?

 𝑦′ = 𝑥2 + 𝑦2

𝑦′′ = 2𝑥 + 2𝑦𝑦′

𝑦′′′ = 2 + 2𝑦𝑦′ + 2(𝑦′)2

𝑦′′′ = 2 + 2𝑦𝑦′′ + 2(𝑦′)2

𝑦𝑖𝑣 = 2𝑦𝑦′′′ + 2𝑦′𝑦′′ + 4𝑦′𝑦′′ = 2𝑦𝑦′′ + 6𝑦′𝑦′′

𝑦0
′ = 𝑥0

2 + 𝑦0
2 = 0 + 1 = 1

𝑦0
′′=2𝑥0 + 2𝑦0𝑦0

′=0+2=2

𝑦0
′′′=2 + 2𝑦0𝑦0

′′ + 2(𝑦0
′)2= 2+4+2 = 8

𝑦0
𝑖𝑣=2𝑦0𝑦0

′′ + 6𝑦0
′𝑦0

′′=16+12 =28

By Taylor’s series method

𝑦1 = 𝑦0 +
ℎ

1!
𝑦0
, +

ℎ2

2!
𝑦0
,, +

ℎ3

3!
𝑦0
,,, +

ℎ4

4!
𝑦0
𝑖𝑣

𝑦(0.1) = 1 + 0.1 + 0.01 + 0.00133333 + 0.000116666 = 1.11144999

3. using Taylor series method, find y at x=0.1,0.2 correct to three significant details given.

𝑑𝑦

𝑑𝑥
− 2𝑦 = 3𝑒𝑥 y(0) =0

Here 𝑥0 = 0, 𝑦0 = 0, 𝑥1 = 0.1, 𝑥2 = 0.2, 𝑥1 = 0.1

𝑦′ = 2𝑦 + 3𝑒𝑥

𝑦′′ = 2𝑦′ + 3𝑒𝑥

𝑦′′′ = 2𝑦′′ + 3𝑒𝑥

𝑦𝑖𝑣 = 2𝑦′′′ + 3𝑒𝑥

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

 152 Numerical Methods and Programming in

C++

𝑦0
′ = 2𝑦0 + 3𝑒

𝑥0 = 3

𝑦0
′′ = 2𝑦0

′ + 3𝑒𝑥0′ = 9

𝑦𝑜
′′′ = 18 + 3 = 21

𝑦𝑜
𝑖𝑣 = 42 + 3 = 45

𝑦1 = 𝑦0 +
ℎ

1
𝑦0
, +

ℎ2

2
𝑦0
,, +

ℎ3

6
𝑦0
,,, +

ℎ4

24
𝑦0
𝑖𝑣

𝑦(0.1) = 𝑦1 = 0 + (0.1)(3) +
0.01

2
(9) +

0.001

6
(21) +

0.0001

24
(45) +

=0.3+0.045+0.0035+0.0001875+

=0.3486875=0.349

𝑦1
′ = 2𝑦1 + 3𝑒

𝑥1 = 0.3486875𝑋2 + 3𝑒0.1 = 4.012887

𝑦1
′′ = 2𝑦1

′ + 3𝑒𝑥1 = 0.3486875𝑋2 + 3𝑒𝑥1 = 11.025744

𝑦1
′′′ = 2𝑦1

′′ + 3𝑒𝑥1 = 25.3670608

𝑦2 = 𝑦(0.2) = 𝑦1 +
ℎ

1
𝑦1
, +

ℎ2

2
𝑦1
,, +⋯.

= 0.3486875 + (0.1)(4.012887) +
0.01

2
(11.341286) +

0.001

6
(25.99808) +⋯.

 =0.8110156=0.811

Exercises:

1. Using Taylor method, compute y(0.2) y(0.4) correct to 4 decimal places given
𝑑𝑦

𝑑𝑥
= 1−

2𝑥𝑦, 𝑦(0) = 0

Solution: y(0.2)=0.194752003, y(0.4)=0.35988

2. Using Taylor series method find y(1.1) and y(1.2) correct to four decimal places given

𝑑𝑦

 𝑑𝑥
= 𝑥𝑦1/3

Solution: 𝑦(1.1) = 1.10681,𝑦(1.2) = 1.22772

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

 153 Numerical Methods and Programming in

C++

3. Using Taylor series method find y(1.1) and y(1.2) correct to four decimal places given

𝑑𝑦

𝑑𝑥
− 2𝑦 = 3𝑒𝑥

Solution:𝑦(0.1) = 0.349, 𝑦(0.2) = 0.811

4.2. Taylor Series Method for Higher Order Differential Equations:

𝑑2𝑦

𝑑𝑥2
= (𝑓(𝑥, 𝑦,

𝑑𝑦

𝑑𝑥
)… (1)

𝑦′′ = 𝑓(𝑥, 𝑦, 𝑦′)

With 𝑦(𝑥𝑜) = 𝑦0…… . . (𝑖)

And 𝑦′(𝑥𝑜) = 𝑦0
, … . (𝑖𝑖)

Put 𝑦′ = 𝑃…(2)

𝑦′′ = 𝑃′ so equation 1 becomes

𝑃′ = 𝑓(𝑥, 𝑦, 𝑃)……… . (3)

Initial conditions (i) and (ii) become

𝑦(𝑥0) = 𝑦0…… . . (𝑖𝑖𝑖)

Hence we need to solve first order differential equations subject to (iii) & (iv) conditions

Taylor algorithm for equation (3)

𝑃1 = 𝑃0 + ℎ𝑃0
, +

ℎ2

2!
𝑃0
,, +

ℎ3

3!
𝑃0
,,, +

Where h is

𝑥 = 𝑥1=𝑥0 + ℎ

Taylor algorithm for equ (2) is

𝑃1 = 𝑃0 + ℎ𝑃0
, +

ℎ2

2!
𝑃0
,, +

Where h is

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

 154 Numerical Methods and Programming in

C++

𝑥 = 𝑥1 = 𝑥0 + ℎ

Taylor algorithm for equ (2) is

𝑦1 = 𝑦0 + ℎ𝑦0
, +

ℎ2

2!
𝑦0
,, +

ℎ3

3!
𝑦0
,,,
+

𝑦1 = 𝑦0 + ℎ𝑃0 +
ℎ2

2!
𝑃0
′ +

ℎ3

3!
𝑃0
,,,…… . (5)

Differentiating equation (3) successively we get 𝑃′′ , 𝑃′′′ etc. so the values of, 𝑃0
′ , 𝑃0

′′, 𝑃0
′′′ can be

calculated.

𝑃2 = 𝑃1 + ℎ𝑃1
′ +

ℎ2

2!
𝑃1
′′ +

ℎ3

3!
𝑃1
,,,…… . (6)

𝑦2 = 𝑦1 + ℎ𝑦1
, +

ℎ2

2!
𝑦1
,, +

ℎ3

3!
𝑦1
,,,
+

𝑦2 = 𝑦1 + ℎ𝑃1 +
ℎ2

2!
𝑃1
′ +

ℎ3

3!
𝑃1
,, +⋯ . (7)

Problem 1: Evaluate the values of y(0.1) and y(0.2) given 𝑦′′ − 𝑥(𝑦′)2 + 𝑦2 = 0, y(0)=1, y’(0)=0

by Taylor series method

Solution:

𝑦′′ − 𝑥(𝑦′)2 + 𝑦2 = 0…… . . (1)

Put y’ = Z

Hence the equation reduces to

𝑍′-x𝑧2 + 𝑦2 = 0

𝑍′=x𝑧2 − 𝑦2……………(2)

By Initial condition

𝑦0 = 𝑦(0) = 1

𝑧0 = 𝑦0
′ = 0

Now 𝑧0 = 𝑧(0) = 0 and 𝑥0 = 0

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

 155 Numerical Methods and Programming in

C++

𝑧1 = 𝑧0 + ℎ𝑧0
, +

ℎ2

2!
𝑦𝑧0

,, +

From equ(2) we get

𝑍′ = 𝑥𝑧2 − 𝑦2

𝑍′′ = 𝑧2 + 2𝑥𝑧𝑧′ − 2𝑦𝑦′

𝑧0
′ = 𝑥0𝑧

2 − 𝑦0
2 = −1

𝑧0
′′ = 𝑧0

2 + 2𝑥0𝑧0
2𝑧0

′ − 2𝑦𝑜𝑦0
, = 0

𝑧0
′′ = 2

𝑧1 = −0.0997

By Taylor series for y1,

𝑦1 = 𝑦(0.1) = 𝑦0 + ℎ𝑦0
′ +

ℎ2

2
𝑦0
′′ +⋯

= 1 + (0.1)(𝑧0) +
(0.01)

2
𝑧0
′ +

0.001

6
(0) + ⋯

=1-0.005=0.995

Similarly,

𝑦2 = 𝑦(𝑥2) = 𝑦1 +
ℎ

1!
𝑦1
′ +

ℎ2

2!
𝑦1
′′ +⋯

= 0.995 +
(0.1)

2
𝑧1 +

(0.01)

2
𝑧1
′ +

(0.001)

6
𝑧1
′′ +

𝑧1
′ = 𝑥1𝑧1

2 − 𝑦1
2

= (0.1)(−0.0997)(−0.0997) − (0.995)3=-0.9890

𝑧1
′ = −0.1087

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

 156 Numerical Methods and Programming in

C++

𝑦2 = 0.995 +
(0.1)

1
(−0.0997) +

(0.01)

2
(0.9890) +

(0.001)

6
(−0.1687) +⋯ .= 0.9801

𝑦(0.1) = 0.9950

𝑦(0.2) = 0.9801

Exercise

 Solve 𝑦′′=𝑦 + 𝑥𝑦′ given y(0)=1, 𝑦0
′ = 0 and calculate 𝑦(0.1)

Solution: 𝑦(0.1) = 1.00501252

4.3. Euler’s Method

In solving a first order differential equation by numerical methods, we come across two types of

solution

(i) A series solution of y in terms of x which wil yield the value of y for a particular value

of x by direct substitution in the series solution.

(ii) Values of y at specified valued x

So the methods such as Euler, Runge kutta comes under the second category.

The methods of second category are called step by step methods because the values of y are

calculated by short steps ahead of equal interval h of the independent variable x.

AIM: To solve
𝑑𝑦

𝑑𝑥
= 𝐹(𝑥, 𝑦) with the initial condition

𝑦(𝑥0) = 𝑦0… . . (1)

Let us take the points

𝑥 = 𝑥0, 𝑥1, 𝑥2….

𝑖. 𝑒. , 𝑥𝑖 = 𝑥0 + 𝑖ℎ

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

 157 Numerical Methods and Programming in

C++

Let the solution of the differential solution be denoted by the continuous graph 𝑃0(𝑥0, 𝑦0)

lies on the curve. We require the value of y of the curve at 𝑥 = 𝑥1

The equation of the tangent at (𝑥0, 𝑦0) to the curve is

𝑦 − 𝑦0 = 𝑦(𝑥0,𝑦0)
′ (𝑥 − 𝑥0)

𝑦 − 𝑦0 = 𝑓(𝑥0, 𝑦0) (𝑥 − 𝑥0)

𝑦 = 𝑦0 + 𝑓(𝑥0, 𝑦0)(𝑥 − 𝑥0)… (2)

This y is the value of y on the tangent corresponding to x=x. in the interval (𝑥0, 𝑥1) the

curve is approximated by the tangent.

𝑦1 = 𝑦0 + 𝑓(𝑥0, 𝑦0)(𝑥 − 𝑥0)

𝑦1 = 𝑦0 + ℎ𝑦𝑜
′ ℎ = 𝑥1 − 𝑥0

Again we approximate curve by the line (𝑥1, 𝑦1) and whose slope is 𝑓(𝑥1, 𝑦1)

𝑦2 = 𝑦1 + ℎ𝑓(𝑥1, 𝑦1) = 𝑦1 + ℎ𝑦1
′

Thus

𝑦𝑛+1 = 𝑦𝑛 + ℎ𝑓(𝑥𝑛, 𝑦𝑛) 𝑛 = 0,1,2… ..

 This formula is called Euler’s algorithm

In otherwords

𝑦(𝑥 + ℎ) = 𝑦(𝑥) + ℎ𝑓(𝑥, 𝑦)

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

 158 Numerical Methods and Programming in

C++

In this method the actual curve is approximated by a sequence of short straight lines. As the

interval increases the straight ling deviates much from the actual curve. Hence the accuracy

cannot be obtained as the number of interval’s increase.

4.4. IMPROVED EULER’S METHOD

Let the tangent at (𝑥0, 𝑦0) to the curve be 𝑃𝑜𝐴. In the interval (𝑥1, 𝑦1) by previos euler’s method

use approximate the curve by the tangent 𝑃𝑜𝐴

𝑦1
1 = ℎ0 + ℎ𝑓(𝑥0, 𝑦0)

𝑦1
1 = 𝑚1𝑄1

𝑄1(𝑥1, 𝑦1
(1)) let 𝑄1𝐶 be the line at 𝑄1 whose slope is 𝑓(𝑥1, 𝑦1

(1)). Now take the average of the

slopes at 𝑃𝑜 and 𝑄1 i.e.,

1

2
[𝑓(𝑥0, 𝑦0) + 𝑓(𝑥1, 𝑦1

(1))]

Now draw a line 𝑃𝑜D through 𝑃𝑜(𝑥0, 𝑦0) with this as the slope

𝑦 − 𝑦0 =
1

2
[𝑓(𝑥0, 𝑦0) + 𝑓(𝑥1, 𝑦1

(1))] (𝑥 − 𝑥0)…(2)

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

 159 Numerical Methods and Programming in

C++

This line intersects 𝑥 = 𝑥1at

𝑦1 = 𝑦0 +
1

2
ℎ [𝑓(𝑥0, 𝑦0) + 𝑓(𝑥1, 𝑦1

(1))]

In general

𝑦𝑛+1 = 𝑦𝑛 +
1

2
ℎ[𝑓(𝑥𝑛 , 𝑦𝑛) + 𝑓(𝑥𝑛 + ℎ, 𝑦𝑛 + ℎ𝑓(𝑥𝑛, 𝑦𝑛)]

This is improved Euler’s method

4.5. MODIFIED EULER METHOD

In the improved Euler method we averaged the slopes whereas in modified euler method we will

average the points

Let 𝑃𝑜(𝑥0, 𝑦0) be the point on the solution curve.

Let 𝑃𝑜𝐴 be the tangent to the curve now this pointmeet the ordinate at

𝑥 = 𝑥0 +
1

2
ℎ𝑓(𝑥0, 𝑦0)… . (1)

Now the slope at 𝑁1 is

𝑓(𝑥0 +
1

2
ℎ, 𝑦0 +

1

2
ℎ𝑓(𝑥0, 𝑦0)

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

 160 Numerical Methods and Programming in

C++

Now draw the line 𝑃(𝑥0, 𝑦0) with this slope as the slope. Let this line meet 𝑥 = 𝑥1 at 𝑘1 =

(𝑥1, 𝑦1
(1)
). This 𝑦1

(1)
 is taken as approximate value of y at 𝑥 = 𝑥1

𝑦1
(1)
= 𝑦0 + ℎ [𝑓(𝑥0 +

1

2
ℎ, 𝑦0 +

1

2
ℎ𝑓(𝑥0, 𝑦0)]

In general

𝑦𝑛+1
(1)

= 𝑦𝑛 + ℎ [𝑓(𝑥𝑛 +
1

2
ℎ, 𝑦𝑛 +

1

2
ℎ𝑓(𝑥𝑛, 𝑦𝑛)]… (2)

𝑦(𝑥 + ℎ) = 𝑦(𝑥) + ℎ [𝑓(𝑥 +
1

2
ℎ, 𝑦 +

1

2
𝑓(𝑥, 𝑦)]

This is modified Euler’s formula.

Problem 1

Given 𝑦′ = −𝑦 and 𝑦(0) = 1 determine the values of y at x=(0.01) to (0.04) by Euler method

Solution: 𝑦′ = −𝑦

𝑦(0) = 1

𝑓(𝑥, 𝑦) = −𝑦

𝑥0 = 1, 𝑦0 = 1, 𝑥1 = 0.011, 𝑥2 = 0.02, 𝑥3 = 0.03, 𝑥4 = 0.04, ℎ = 0.01

𝑦𝑛+1 = 𝑦𝑛 + ℎ𝑓(𝑥𝑛 , 𝑦𝑛)

𝑦1 = 𝑦0 + ℎ𝑓(𝑥0, 𝑦0) = 1 − 0.01 =0.99

𝑦2 = 𝑦1 + ℎ𝑓(𝑥1, 𝑦1) = 0.9801

𝑦3 = 𝑦2 + ℎ𝑓(𝑥2, 𝑦2) = 0.9703

𝑦4 = 𝑦3 + ℎ𝑓(𝑥3, 𝑦3) = 0.9606

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

 161 Numerical Methods and Programming in

C++

X Y

0 1

0.01 0.9900

0.02 0.9801

0.03 0.9703

0.04 0.9606

Exercises:

1.Using Euler’s Method, solve 𝑦′ = 𝑥 + 𝑦, 𝑦(0) = 1 𝑓𝑜𝑟 𝑥 = 0.0(0.2)(1.0)

Solution:

X Y

0.2 1.48

0.4 1.856

0.6 2.3472

0.8 2.97664

1.0 3.771968

2. Solve numerically 𝑦′ = 𝑦 + 𝑒𝑥 , 𝑦(0) = 0 𝑓𝑜𝑟 𝑥 = 0.2,0.4 by improved Euler method

Solution:

𝑦1 = 0.24214, 𝑦2 = 0.59116

3. Given 𝑦′ = 𝑥2 − 𝑦, 𝑦(0) = 1 find correct to four decimal places the values of y(0.1) by

improved Euler method.

Solution: y(0.1)=0.9055

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

 162 Numerical Methods and Programming in

C++

4.compute y at x=0.25 by modified euler method given 𝑦′ = 2𝑥𝑦, 𝑦(0) = 1

Solution: y(0.25) = 1.0645

5. Using modified euler method find 𝑦(0.2), 𝑦(0.1)

Solution: 𝑦(0.2) = 1.25026,𝑦(0.1) = 1.1105

6. Solve the equation
𝑑𝑦

𝑑𝑥
= 1 − 𝑦 given 𝑦(0) = 0 using modified Euler’s method and tabulate

solutions at x=0.1,0.2 and 0.3. compare your results with the exact solution. Also, get the

solutions by Improved Euler method

X Modified Euler Improved

Euler

Exact Solution

0.1 0.095 0.095 0.09516

0.2 0.18098 0.18098 0.18127

0.3 0.258787 0.258787 0.25918

4.6.RUNGE KUTTA METHOD

In Runge kutta method the derivatives of higher order are not required and we require only the

given function values at different points.

Second order Runge kutta method

To solve
𝑑𝑦

𝑑𝑥
= 𝑓(𝑥, 𝑦)

Given: 𝑦(𝑥0) = 𝑦0…..(1)

Proof:

By Taylor series we have

𝑦(𝑥 + ℎ) = 𝑦(𝑥) + ℎ𝑦′(𝑥) +
ℎ2

2!
𝑦′′(𝑥) +⋯ . . (2)

Differentiating equation (1)wrt x

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

 163 Numerical Methods and Programming in

C++

𝑦′′ =
𝜕𝑓

𝜕𝑥
+
𝜕𝑓

𝜕𝑦

𝑑𝑦

𝑑𝑥
= 𝑓𝑥 + 𝑦′𝑓𝑦 = 𝑓𝑥 + 𝑓𝑓𝑦 ……(3)

Using the values of 𝑦′𝑎𝑛𝑑 𝑦′′𝑔𝑜𝑡 𝑓𝑟𝑜𝑚 𝑒𝑞𝑢 1 𝑎𝑛𝑑 3 𝑖𝑛 2 𝑤𝑒 𝑔𝑒𝑡

𝑦(𝑥 + ℎ) − 𝑦(𝑥) = ℎ𝑓 +
1

2
ℎ2[𝑓𝑥 + 𝑓𝑓𝑦] + 0(ℎ

3)

∆𝑦 = ℎ𝑓 +
1

2
ℎ2[𝑓𝑥 + 𝑓𝑓𝑦] + 0(ℎ

3)… . (4)

Let ∆1𝑦1 = 𝑘1 = 𝑓(𝑥, 𝑦). ∆𝑥 = ℎ𝑓(𝑥, 𝑦)… . . (5)

∆2𝑦1 = 𝑘2 = ℎ𝑓(𝑥 + 𝑚ℎ, 𝑦 +𝑚𝑘1)… . . (6)

And let ∆𝑦 = 𝑎𝑘1 + 𝑏𝑘2………(7)

Where a,b and m are constants to be determined

Expanding 𝑘2 𝑎𝑛𝑑 ∆𝑦 in powers of h expanding 𝑘2 by Taylor series for two variables we have

𝑘2 = ℎ𝑓(𝑥 +𝑚ℎ, 𝑦 + 𝑚𝑘1)

= ℎ[𝑓(𝑥, 𝑦) + (𝑚ℎ
𝜕

𝜕𝑥
+𝑚𝑘1

𝜕

𝜕𝑦
) 𝑓 +

(𝑚ℎ
𝜕
𝜕𝑥 +𝑚𝑘1

𝜕
𝜕𝑦)

2

𝑓

2!
+⋯….

ℎ[𝑓 + 𝑚ℎ𝑓𝑥 +𝑚ℎ𝑓𝑓𝑦 +
(𝑚ℎ

𝜕
𝜕𝑥 + 𝑚𝑘1

𝜕
𝜕𝑦)

2

𝑓

2!
+ ⋯

since 𝑘1 = ℎ𝑓

=hf+𝑚ℎ2(𝑓𝑥 + 𝑓𝑓𝑦) +⋯ .. higher powers of h ………………..(9)

Sub 𝑘1, 𝑘2 in 7

∆𝑦 = 𝑎ℎ𝑓 + 𝑏(ℎ𝑓 + 𝑚ℎ2(𝑓𝑥 + 𝑓𝑓𝑦) + 0(ℎ
3)

 ∆𝑦 = (𝑎 + ℎ)𝑏𝑓 + 𝑏𝑚ℎ2(𝑓𝑥 + 𝑓𝑓𝑦) + 0(ℎ
3)…… (10)

Equating y from 4 and 10 we get

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

 164 Numerical Methods and Programming in

C++

a+b=1 and 𝑏𝑚 =
1

2

from a+b=1

a = 1-b

also m=
1

2𝑏

where 𝑘1 = ℎ𝑓(𝑥, 𝑦)

𝑘2 = ℎ𝑓 (𝑥 +
ℎ

2𝑏
, 𝑦 +

ℎ𝑓

2𝑏
)

y=y(x+h)-y(x)

𝑦(x + h) = y(x) + (1 − b)hf + bhf (𝑥 +
ℎ

2𝑏
, 𝑦 +

ℎ𝑓

2𝑏′
)

𝑦𝑛+1 = 𝑦𝑛 + (1 − 𝑏)ℎ𝑓(𝑥𝑛, 𝑦𝑛) + bhf (𝑥𝑛 +
ℎ

2𝑏
, 𝑦𝑛 +

ℎ𝑓

2𝑏′
)+0(ℎ3)

From this general second order Runge kutta formula, setting a=0,b=1 we get second order

Runge Kutta algorithms

𝑘1 = 𝑛𝑓(𝑥, 𝑦)

𝑘2 = 𝑛𝑓 (𝑥 +
1

2
ℎ, 𝑦 +

1

2
𝑘1)

𝑘3 = 𝑛𝑓 (𝑥 +
1

2
ℎ, 𝑦 +

1

2
𝑘2)

𝑘4 = 𝑛𝑓(𝑥 + ℎ, 𝑦 + 𝑘3)

∆𝑦 =
1

6
(𝑘1 + 2𝑘2 + 2𝑘3 + 𝑘4)

𝑦(𝑥 + ℎ) = 𝑦(𝑥) + ∆𝑦

Exercises

Obtain the values of y at x=0.1,0.2 using runge kutta method (i) second order (ii) fourth order

for the differential equation

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

 165 Numerical Methods and Programming in

C++

𝑦′ = −𝑦 given y(o)=1

Solution

F(x,y) = -y

𝑥0 = 0, 𝑦0 = 1, 𝑥1 = 0.1, 𝑥2 = 0.2

Second order

𝑘1 = ℎ𝑓(𝑥0, 𝑦0) = (0.1)(−𝑦0) = (0.1)(−1) = −0.1

𝑘2 = 𝑛𝑓 (𝑥0 +
1

2
ℎ, 𝑦0 +

1

2
𝑘1)

= (0.1)𝑓(0.05,0.95) = (0.1)(−0.95)

∆𝑦 = −0.095

𝑦1 = 𝑦0 + ∆𝑦 = 1 − 0.095 = 0.905

Again, starting from (0.1,0.905) replacing (𝑥0, 𝑦0) by (𝑥1, 𝑦1) we get

𝑘1 = (0.1)𝑓(0.1,0.905) = −0.0905

𝑘2 = 𝑛𝑓 (𝑥1 +
1

2
ℎ, 𝑦1 +

1

2
𝑘1)

𝑘2 = (0.1)(−0.85975)=-0.085975= ∆𝑦

𝑦2 = 𝑦(0.2) = 𝑦1 + ∆𝑦 = 0.905 − 0.085975 = 0.819025

Fourth Order

𝑘1 = ℎ𝑓(𝑥0, 𝑦0) = (0.1)(−1) = −0.1

𝑘2 = ℎ𝑓 (𝑥0 +
1

2
ℎ, 𝑦0 +

1

2
𝑘1)

(0.1)𝑓(0.05,0.95) = (0.1)(−0.95) = −0.095

𝑘3 = ℎ𝑓 (𝑥0 +
1

2
ℎ, 𝑦0 +

1

2
𝑘2)

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

 166 Numerical Methods and Programming in

C++

0.1𝑓(0.05,0.9525)

= (0.1)(−0.9525) = −0.09525

𝑘4 = 𝑛𝑓(𝑥0 + ℎ, 𝑦0 + 𝑘3)

= (0.1)𝑓(0.1,0.90475) = −0.090475

∆𝑦 =
1

6
(𝑘1 + 2𝑘2 + 2𝑘3 + 𝑘4)

=
1

6
(−0.1 + 2(−0.095) + 2(−0.09525) + (−0.090475) = −0.0951625

𝑦1 = 𝑦0 + ∆𝑦 = 1 − 0.951625 = 0.9048375

Replacing (𝑥0, 𝑦0) by (𝑥1, 𝑦1)

𝑘1 = ℎ𝑓(𝑥1, 𝑦1) = (0.1)𝑓(0.1,0.9048375) = −0.09048375

𝑘2 = ℎ𝑓 (𝑥0 +
1

2
ℎ, 𝑦0 +

1

2
𝑘1)

= (0.1)𝑓(0.15,0.8595956) = (0.1)(−0.8595956)

𝑘2 = −0.08595956

𝑘3 = ℎ𝑓 (𝑥1 +
1

2
ℎ, 𝑦1 +

1

2
𝑘2)

𝑘3 = 0.1𝑓(0.15,0.8618577)~ = −0.08618577

𝑘4 =
1

2
𝑘2 (𝑥1 + ℎ, 𝑦1 +

1

2
𝑘2)

= (0.1)(0.2,03.8186517) = (0.1)(−0.8186517)

𝑘4 = −0.08186517

∆𝑦 =
1

6
(−0.09048375− 2 × 0.08595956) − 2(0.08618577) − 0.08186517

= −0.086106596

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

 167 Numerical Methods and Programming in

C++

𝑦2 = 𝑦(0.2) = 𝑦1 + ∆𝑦 = 0.9048375− 0.086106596 = 0.81873090

X Second Order Fourth order

0.1

0.905 0.9048375

0.2 0.819025 0.81873090

2.Compute y(0.3) given
𝑑𝑦

𝑑𝑥
+ 𝑦 + 𝑥𝑦2 = 0, 𝑦(0) = 1 by taking h=0.1 using Runge kutta method

of fourth order.

Solution:

𝑦′ = −(𝑥𝑦2 + 𝑦) = 𝑓(𝑥, 𝑦)

 𝑥0 = 0, 𝑦0 = 1, 𝑥1 = 0.1, 𝑥2 = 0.2, 𝑥3 = 0.3, 𝑦3 =? ?

For 1st Interval

𝑘1 = ℎ𝑓(𝑥0, 𝑦0) = (0.1)[−(𝑥0𝑦0
2 + 𝑦0)] = −0.1

𝑘2 = ℎ𝑓 (𝑥0 +
ℎ

2
, 𝑦0 +

1

2
𝑘1) = (0.1)𝑓(0.05,0.95) = −0.0995

𝑘3 = ℎ𝑓 (𝑥0 +
1

2
ℎ, 𝑦0 +

1

2
𝑘2) = (0.1)𝑓(0.05,0.95025) = −0.0995

𝑘4 = ℎ𝑓(𝑥0 + ℎ, 𝑦0 + 𝑘3) = −0.0982

𝑦1 = 1 +
1

6
[−0.1 + 2(−0.0995) + 2(−0.0995) − 0.0982] = 0.9006

Now ℎ𝑓(𝑥1, 𝑦1) = (0.1)𝑓(0.1,0.9006) = −0.0982

𝑘2 = ℎ𝑓 (𝑥1 +
ℎ

2
, 𝑦1 +

1

2
𝑘1)

= (0.1) − 𝑓(0.15,0.8526) = −0.0960

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

 168 Numerical Methods and Programming in

C++

𝑘3 = ℎ𝑓 (𝑥1 +
ℎ

2
, 𝑦1 +

1

2
𝑘2) = (0.1)𝑓(0.15,0.8526) = −0.0962

𝑘4 = ℎ𝑓(𝑥1 + ℎ, 𝑦1 + 𝑘3) = (0.1)𝑓(0.2,0.8044) = −0.0934

𝑦2 = 𝑦1 +
1

6
[−0.0982 + 2(−0.960) + 2(−0.0962) + (−0.0934)] = 0.8046

(𝑥2, 𝑦2) = (0.2,0.8046)

𝑘1 = ℎ𝑓(0.2,0.8046) = −0.0934

𝑘2 = ℎ𝑓(0.25,0.7579) = −0.0902

𝑘3 = ℎ𝑓(0.25,0.7595) = −0.0904

𝑘4 = ℎ𝑓(0.3,0.7142) = −0.0867

𝑦1 = 𝑦0 +
1

6
(𝑘1 + 2𝑘2 + 2𝑘3 + 𝑘4)

𝑦(0.3) = 0.7144

3.Using Runge kutta method of fourth order, find y(0.8) correct to 4 decimal places if 𝑦′ = 𝑦 −

𝑥2, y(0.6)=1.7379

Solution

𝑥0 = 0.6, 𝑦0 = 1.7379,ℎ = 0.1

𝑥1 = 0.7, 𝑥2 = 0.8, 𝑓(𝑥, 𝑦) = 𝑦 − 𝑥2

𝑦1 = 𝑦0 +
1

6
(𝑘1 + 2𝑘2 + 2𝑘3 + 𝑘4)

𝑘1 = ℎ𝑓(𝑥0, 𝑦0) = (0.1)𝑓(0.6,1.7379) = 0.1378

𝑘2 = ℎ𝑓(0.65,1.8068) = 0.1384

𝑘3 = (0.1)𝑓(0.65,1.8071) = 0.1385

𝑘4 = ℎ𝑓(𝑥0 + ℎ, 𝑦0 + 𝑘3) = 0.1 + 𝑓(0.7,1.8764) = 0.1386

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

 169 Numerical Methods and Programming in

C++

𝑦(0.7) = 𝑦1 +
1

6
[0.1378 + 2(0.1384) + 2(0.1385) + 0.1386] = 1.8763

𝑦2 = 𝑦(0.8)

(𝑥1, 𝑦1) = (0.7,1.8763)

𝑘1 = (0.1)[1.8763 − (0.7
2)] = 0.1386

𝑘2 = ℎ𝑓(0.75,1.9456) = 0.1383

𝑘3 = (0.1)𝑓(0.75,1.9455) = 0.1383

𝑘4 = ℎ𝑓(𝑥1 + ℎ, 𝑦1 + 𝑘3) = 0.1 + 𝑓(0.8,2.0146) = 0.1375

𝑦2 = 1.8763 +
1

6
[0.1386 + 2(1.1383) + 2(1.1383) + 0.1375] = 2.0145

𝑦2 = 𝑦(0.8) = 2.0145

EXERCISES

Using Runge kutta method of fourth order find the values of y. when x=0.2 given 𝑦′ = 𝑥 + 𝑦

Solution:

𝑥0 = 0, 𝑦0 = 1, ℎ = 0.1, 𝑘1 = 0.1, 𝑘2 = 0.11, 𝑘3 = 0.1105,𝑘4 = 0.12105, 𝑦1 = 1.1103, 𝑦1

= 1.1103

At (𝑥1, 𝑦1)𝑘1 = 0.12103, 𝑘2 = 0.132082, 𝑘3 = 0.132634, 𝑘4 = 0.144293, 𝑦2 = 1.2428

4.7. Solution of second order differential equations by Runge-Kutta method

Let us consider the second order differential equation of the form

d2y

d2x
= g (x, y,

dy

dx
) . . (1)

If we put
dy

dx
= z then

d2y

dx2
=

dz

dx
…(2)& (3)

Sub 2 and 3 in 1 we get

𝑑𝑧

𝑑𝑥
= 𝑔(𝑥, 𝑦, 𝑧) and

dy

dx
= z,

dy

dx
= z = f(x, y, z). . (4)

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

 170 Numerical Methods and Programming in

C++

𝑑𝑧

𝑑𝑥
= 𝑔(𝑥, 𝑦, 𝑧)

Equ 4 and 5 gives a system of simultaneous differential equations which can be solved a sbelow.

So instead of solving the second order differential equation given by 1 it is enough if we solve the

system of equ 4 and 5. To solve this system of differential equations at an interval of h, the

increments in y and z for the first increment in x computed by using the following formulae.

𝑘1 = ℎ𝑓(𝑥0,𝑦0,𝑧0); 𝑙1 = ℎ𝑔(𝑥0,𝑦0,𝑧0)

𝑘2 = ℎ𝑓 (𝑥0 +
ℎ

2
, 𝑦0 +

𝑘1

2
, 𝑧0 +

𝑙1

2
):𝑙2 = ℎ𝑔 (𝑥0 +

ℎ

2
, 𝑦0 +

𝑘1

2
, 𝑧0 +

𝑙1

2
)

𝑘3 = ℎ𝑓 (𝑥0 +
ℎ

2
, 𝑦0 +

𝑘2

2
, 𝑧0 +

𝑙2

2
):𝑙3 = ℎ𝑔 (𝑥0 +

ℎ

2
, 𝑦0 +

𝑘2

2
, 𝑧0 +

𝑙2

2
)

𝑘4 = ℎ𝑓(𝑥0 + ℎ, 𝑦0 + 𝑘3, 𝑧0 + 𝑙3):𝑙4 = ℎ𝑔(𝑥0 + ℎ, 𝑦0 + 𝑘3, 𝑧0 + 𝑙3)

Now 𝑦 =
1

6
(𝑘1 + 2𝑘2 + 2𝑘3 + 𝑘4) and 𝑧 =

1

6
(𝑙1 + 2𝑙2 + 2𝑙3 + 𝑙4)

In a similar manner we can find the next increment by replacing 𝑥0,𝑦0,𝑧0 by 𝑥1,𝑦1,𝑧1 and so on.

Examples

Solve
d2y

dx2
− 𝑥 (

𝑑𝑦

𝑑𝑥
)
2

+ 𝑦2 = 0 using Runge kutta method for x=0.2 correct to 4 decimal places.

Initial conditions are x=0,y=1,𝑦′ = 0

d2y

dx2
− 𝑥 (

𝑑𝑦

𝑑𝑥
)
2

+ 𝑦2 = 0

If we put
dy

dx
= z then

d2y

dx2
=

dz

dx

dz

dx
= 𝑥𝑧2 − 𝑦2

Let
dy

dx
= z =𝑓(𝑥, 𝑦, 𝑧);

dz

dx
= 𝑥𝑧2 − 𝑦2 = 𝑔(𝑥, 𝑦, 𝑧)

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

 171 Numerical Methods and Programming in

C++

Also we are given that x=0,y=1,𝑦′ = 0 (or) 𝑧0 = 0, ℎ = 0.2

Now

𝑘1 = ℎ𝑓(𝑥0,𝑦0,𝑧0) = ℎ𝑧0 = 0

𝑙1 = ℎ𝑔(𝑥0,𝑦0,𝑧0) = ℎ(𝑥0𝑧0
2 − 𝑦0

2) = (0.2)(0 − 1) = −0.2

𝑘2 = ℎ𝑓 (𝑥0 +
ℎ

2
, 𝑦0 +

𝑘1
2
, 𝑧0 +

𝑙1
2
) = ℎ (𝑧0 +

𝑙1
2
) = −0.02

𝑙2 = ℎ𝑔 (𝑥0 +
ℎ

2
, 𝑦0 +

𝑘1
2
, 𝑧0 +

𝑙1
2
) = ℎ [(𝑥0 +

ℎ

2
) (𝑧0 +

𝑙1
2
) − 𝑦0 +

𝑘1
2
]

= (0.2) [(0 +
0.2

2
) (0 −

0.2

2
) − (1 +

0

2
)]=-0.1998

𝑘3 = ℎ𝑓 (𝑥0 +
ℎ

2
, 𝑦0 +

𝑘2

2
, 𝑧0 +

𝑙2

2
)=ℎ [𝑧0 +

𝑙2

2
] = (0.2) (0 −

0.1998

2
) = −0.01998

𝑙3 = ℎ𝑔 (𝑥0 +
ℎ

2
, 𝑦0 +

𝑘2
2
, 𝑧0 +

𝑙2
2
) = ℎ [(𝑥0 +

ℎ

2
)(𝑧0 +

𝑙2
2
)
2

− (𝑦0 +
𝑘2
2
)
2

]

= (0.2)[(0.2)(0 − 0.1958) − (1 − 0.01998)2] = −0.1906

∆𝑦1 =
1

6
(𝑘1 + 2𝑘2 + 2𝑘3 + 𝑘4)

=
1

6
[0 + 2(−0.02) + 2(−0.01998) − 0.0392] = −0.0199

𝒚(𝟎. 𝟐) = 𝟎. 𝟗𝟖𝟎𝟏

Exercises

1. Solve the equation 𝑦′′ + 𝑦 = 0 with the conditions y(0)=1 and 𝑦′(0) = 0. Compute 𝑦(0.2)

using R-K method.

Solution: 𝑦(0.2) = 1.0204

2. Find 𝑦(0.1) from
d2y

dx2
− 𝑦3 = 0; 𝑦(0) = 10, 𝑦′(0) = 50 using R-K method

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

 172 Numerical Methods and Programming in

C++

Solution: 𝑦(0.1) = 17.42

PARTIAL DIFFERENTIAL EQUATIONS

Partial differential equations occur frequently in many branches of applied mathematics,

for example in fluid dynamics, heat transfer, elasticity, quantum mechanics and electromagnetic

theory. Many of these equations cannot be solved by analytical methods in closed for, solution.

Since analytical solution are not available several numerical have been proposed for the solution

of partial differential equations. Of all the numerical methods available, the finite difference

method is most commonly used. In this method the derivatives appearing the equation are

replaced by finite differences and the resulting system of algebraic equations are solved by

efficient algorithms. This method was first used by L.F.Richardson and it was later improved by

H.Leibmann. By doing this we get the solution at the pivotal points called numerical solution.

4.8. Classification of Partial Differential Equations of the Second Order

The general second order linear partial differential equation in two independent variables

is of the form

𝐴(𝑥, 𝑦)
𝜕2𝑢

𝜕𝑥2
+ 𝐵(𝑥, 𝑦)

𝜕2𝑢

𝜕𝑥𝜕𝑦
+ 𝐶(𝑥, 𝑦)

𝜕2𝑢

𝜕𝑦2
+ 𝐷

𝜕𝑢

𝜕𝑥
+ 𝐸

𝜕𝑢

𝜕𝑦
+ 𝐹𝑢 = 0

Which can be written as

Auxx+Buxy+Cuyy+F(x,y,u,ux,uy)=0 ------------------------------------ (1)

Where A,B,C,D,E,F are all functions of x and y.

A partial differential equation of the form (1) is said to be

(i) Elliptic if B2-4AC<0 at a point in the (x,y) Plane.(Laplace equation)

(ii) Parabolic if B2-4AC=0 at a point in the (x,y) Plane.(Heat equation)

(iii) Hyperbolic if B2-4AC>0 at a point in the (x,y) Plane.(Wave equation)

Ex.1 Consider uxx+4uxy+4uyy- ux+2uy=0

Here B2-4AC = 16-16 =0 hence it is a parabolic equation.

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

 173 Numerical Methods and Programming in

C++

Ex.2 Consider x2uxx+(1-y2)uyy=0 -<x<, -1<y<1

Here B2-4AC=02-4x2(1-y2)<0, since y2<1

Hence it is an elliptic equation

Ex.3 (1+x2) uxx+(5+2x2)2 uxy+(4+x2) uyy =0

B2-4AC=(5+2x2)2-4(1+x2)(4+x2)=9>0 hence it is Hyperbolic

Ex.4 uxx+2xuxy+(1-y2)uyy =0

Here B2-4AC= (2x)2-4(1-y2) = 4(x2+y2-1) ?

Note: The same differential equation may be elliptic in one region parabolic in another and

hyperbolic in some other region. For example, the equation xuxx+uyy=0 is elliptic if x > 0,

hyperbolic if x < 0 and parabolic if x = 0

Consider the circle x2+y2=1

(i) It is elliptic in the inside of unit circle

(ii) It is parabolic on the unit circle

(iii) It is hyperbolic outside of unit circle.

EXAMPLES

1. Classify the following partial differential equations

(i) fxx+2fxy+4fyy = 0 (ii) fxx-2fxy+fyy = 0

Solution (i) comparing this equation with (1) above, we find that

A=1, B=2, C=4

B2-4AC = 4-4x1x4 =-12<0

Hence the equation is elliptic.

(ii) Here A=1, B =-2, C=1

B2-4AC = 4-4 = 0

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

 174 Numerical Methods and Programming in

C++

Hence the equation is parabolic.

Example 2 Determine whether the following equation is elliptic or hyperbolic?

(x+1) uxx-2(x+2) uxy+(x+3) uyy = 0

Solution: Comparing the given equation with (1) above we find that

A= x+1, B= -2(x+2), C=x+3

B2-4AC = 4(x+2)2- 4 (x+1) (x+3)

 = 4[x2+4x+4) - (x2+4x+3)] = 4(1) = 4 > 0

Hence the equation is hyperbolic at all points of the region.

Example 3: Classify the following equations

(i) 𝑥2
𝜕2𝑢

𝜕𝑥2
+ (1 − 𝑦2)

𝜕2𝑢

𝜕𝑦2
= 0,−∞ < 𝑥 < ∞,−1 < 𝑦 < 1

(ii)
𝜕2𝑢

𝜕𝑥2
+ 4

𝜕2𝑢

𝜕𝑥𝜕𝑦
+ (𝑥2 + 4𝑦2)

𝜕2𝑢

𝜕𝑦2
= sin (𝑥 + 𝑦)

Solution: (i) comparing the given equation with (1) above we have

A= x2, B=0, C=1-y2

𝐵2 − 4𝐴𝐶 = 0 − 4𝑥2(1 − 𝑦2) = 4𝑥2(𝑦2 − 1)

For all x between - and , x2 is positive.

For all y between -1 and 1, y2-1 is negative

B2-4AC < 0 if -1<y<1,x≠0

Hence for - < x < , x≠0, -1<y<1 the equation is elliptic.

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

 175 Numerical Methods and Programming in

C++

𝐍𝐨𝐭𝐞: 1 𝑓𝑜𝑟 − < 𝑥 < , 𝑥 ≠ 0, 𝑦 < −1 𝑜𝑟 𝑦 1 𝑡ℎ𝑒 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 𝑖𝑠 ℎ𝑦𝑝𝑒𝑟𝑏𝑜𝑙𝑖𝑐.

 2. for x= 0 for all y or for all x, y = ±1 the equation is parabolic.

(𝑖𝑖)𝐻𝑒𝑟𝑒 𝐴 = 1,𝐵 = 4, 𝐶 = 𝑥2 + 4𝑦2

𝐵2 − 4𝐴𝐶 = (4)2 − 4.1(𝑥2 − 4𝑦2) = 4(4 − 𝑥2 − 4𝑦2)

(𝑎) 𝑇ℎ𝑒 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 𝑖𝑠 𝑒𝑙𝑙𝑖𝑝𝑡𝑖𝑐 𝑖𝑓 𝐵2 − 4𝐴𝐶 < 0

 𝑖. 𝑒 𝑖𝑓 4 − 𝑥2 − 4𝑦2 < 0

𝐼𝑓𝑥2 + 4𝑦2 > 4 𝑜𝑟 𝑖𝑓
𝑥2

4
+
𝑦2

1
> 1

 So it is elliptic outside the ellipse
𝑥2

4
+

𝑦2

1
= 1

(b) The equation is parabolic if 𝐵2 − 4𝐴𝐶 = 0

i.e., if 4 − 𝑥2 − 4𝑦2 = 0 𝑜𝑟 𝑖𝑓
𝑥2

4
+

𝑦2

1
= 1

so it is parabolic on the ellipse
𝑥2

4
+

𝑦2

1
= 1

(c) The equation is hyperbolic if 𝐵2 − 4𝐴𝐶 > 0

𝑖. 𝑒 𝑖𝑓 4 − 𝑥2 − 4𝑦2 > 0

𝑖. 𝑒 𝑖𝑓 4 > 𝑥2 + 4𝑦2 𝑜𝑟
𝑥2

4
+
𝑦2

1
< 1

So it is hyperbolic inside the ellipse
𝑥2

4
+

𝑦2

1
= 1

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

 176 Numerical Methods and Programming in

C++

Exercises:

Classify the following equations

1.𝑓𝑥𝑥 + 2𝑓𝑥𝑦 + 𝑓𝑦𝑦 = 0 2.𝑢𝑥𝑥 + 4𝑢𝑥𝑦 + 4𝑢𝑦𝑦 − 𝑢𝑥 + 2𝑢𝑦 = 0

3.(1 + 𝑥2)𝑓𝑥𝑥 + (5 + 2𝑥
2)𝑓𝑥𝑦 + (4 + 𝑥

2)𝑓𝑦𝑦 = 0 4.𝑥𝑢𝑥𝑥 + 𝑦𝑢𝑦𝑦 = 0, 𝑥 > 0, 𝑦 > 0

Solutions:

1. Parabolic 2. Parabolic 3. Hyperbolic 4. Elliptic

4.9. Finite Difference Approximations to Partial Derivatives

Consider a rectangular region R in the (x,y) plane. Divide this region into smaller rectangles of

sides x = h and y = k by drawing the sets of lines xi= ih, yj = jk, i,j =0,1,2…..The points of

intersection of these lines are called Pivotal points or mesh points or grid points or lattice points.

(x,y+k)

(x-2h,y) (x-h,y) (x,y) (x+h,y) (x+2h,y)

(i-2,j) (i-1,j) (i,j) (i+1,j) (i+2,j)

(x,y-k)

 (i,j-1)

(x,y-2k)

 (i,j-2)

x=h

y

=

k

Fig. Coordinates of grid points

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

 177 Numerical Methods and Programming in

C++

Notation:𝑢(𝑥𝑖, 𝑦𝑖) = 𝑢𝑖,𝑗 mass numerical value of the solution at =(𝑥𝑖, 𝑦𝑖)

h = step size in x-direction

k=step size in y-direction

If (𝑥𝑖, 𝑦𝑖) is any grid 𝑥𝑖 = 𝑥𝑜 + 𝑖ℎ, 𝑦𝑗 = 𝑦𝑜 + 𝑗𝑘

Here (x=ih, y = jk) is denoted by (i,j)

Derivation of Finite difference approximations for partial derivatives

 By taylor series expansion for a function of two variables

𝑢𝑖+1,𝑗 = 𝑢(𝑥𝑖+1,𝑦𝑗) = 𝑢(𝑥𝑖 + ℎ, 𝑦𝑗)

𝑢𝑖+1,𝑗 = 𝑢𝑖,𝑗 + ℎ (
𝜕𝑢

𝜕𝑥
)
𝑖,𝑗
+
ℎ2

2!
(
𝜕2𝑢

𝜕𝑥2
)
𝑖,𝑗

+
ℎ3

3!
(
𝜕3𝑢

𝜕𝑥3
)
𝑖,𝑗

+
ℎ4

4!
(
𝜕4𝑢

𝜕𝑥4
)
𝑖,𝑗

+⋯(1)

𝑢𝑖+1,𝑗 = 𝑢(𝑥𝑖−1,𝑦𝑗) = 𝑢(𝑥𝑖 − ℎ, 𝑦𝑗)

𝑢𝑖+1,𝑗 = 𝑢𝑖,𝑗 − ℎ (
𝜕𝑢

𝜕𝑥
)
𝑖,𝑗
+
ℎ2

2!
(
𝜕2𝑢

𝜕𝑥2
)
𝑖,𝑗

−
ℎ3

3!
(
𝜕3𝑢

𝜕𝑥3
)
𝑖,𝑗

+
ℎ4

4!
(
𝜕4𝑢

𝜕𝑥4
)
𝑖,𝑗

+⋯(2)

From (1)

(
𝜕𝑢

𝜕𝑥
)
𝑖,𝑗
=
𝑢𝑖+1,𝑗−𝑢𝑖,𝑗

ℎ
−
ℎ

2!
(
𝜕2𝑢

𝜕𝑥2
)
𝑖,𝑗

+⋯…

(
𝜕𝑢

𝜕𝑥
)
𝑖,𝑗
=
𝑢𝑖+1,𝑗−𝑢𝑖,𝑗

ℎ
+ 𝑂(ℎ)

(
𝜕𝑢

𝜕𝑥
)
𝑖,𝑗

𝑢𝑖+1,𝑗−𝑢𝑖,𝑗

ℎ
… . . (3)

Is called first order finite difference(Forward) approximation.

Further we have from (2)

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

 178 Numerical Methods and Programming in

C++

(
𝜕𝑢

𝜕𝑥
)
𝑖,𝑗

𝑢𝑖+1,𝑗−𝑢𝑖,𝑗

ℎ
… . . (4)

Which is also first order finite difference(Backward approximation)

Equation 1-2 will give us

𝑢𝑖+1,𝑗 − 𝑢𝑖−1,𝑗 = 2ℎ (
𝜕𝑢

𝜕𝑥
)
𝑖,𝑗
+
2ℎ3

3!
(
𝜕3𝑢

𝜕𝑥3
)
𝑖,𝑗

..

 (
𝜕𝑢

𝜕𝑥
)
𝑖,𝑗
=

𝑢𝑖+1,𝑗−𝑢𝑖,𝑗

2ℎ
+ 𝑂(ℎ2)

 (
𝜕𝑢

𝜕𝑥
)
𝑖,𝑗

𝑢𝑖+1,𝑗−𝑢𝑖,𝑗

2ℎ

is called second order finite difference(central) approximation.

Equations (1) + (2) will gibe us,

𝑢𝑖+1,𝑗 + 𝑢𝑖−1,𝑗 = 2𝑢𝑖,𝑗 +
2ℎ2

2!
(
𝜕2𝑢

𝜕𝑥2
)
𝑖,𝑗

+
2ℎ4

4!
(
𝜕4𝑢

𝜕𝑥4
)
𝑖,𝑗

(
𝜕2𝑢

𝜕𝑥2
)
𝑖,𝑗

=
𝑢𝑖+1,𝑗 − 2𝑢𝑖−1,𝑗 + 𝑢𝑖+1,𝑗

ℎ2
+ 𝑂(ℎ2)

(
𝜕2𝑢

𝜕𝑥2
)
𝑖,𝑗

𝑢𝑖+1,𝑗 − 2𝑢𝑖,𝑗 + 𝑢𝑖+1,𝑗

ℎ2

Is called second order finite difference approximation(central)

Similarly, we can write

𝑢𝑖,𝑗+1 = 𝑢(𝑥𝑖, 𝑦𝑗+1) = 𝑢(𝑥𝑖, 𝑦𝑗+𝑘)

𝑢𝑖,𝑗+1 = 𝑢𝑖,𝑗 + 𝑘 (
𝜕𝑢

𝜕𝑥
)
𝑖,𝑗
+
𝑘2

2!
(
𝜕2𝑢

𝜕𝑦2
)
𝑖,𝑗

+
𝑘3

3!
(
𝜕3𝑢

𝜕𝑦3
)
𝑖,𝑗

+
𝑘4

4!
(
𝜕4𝑢

𝜕𝑦4
)
𝑖,𝑗

+..

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

 179 Numerical Methods and Programming in

C++

𝑢𝑖,𝑗−1 = 𝑢𝑖,𝑗 − 𝑘 (
𝜕𝑢

𝜕𝑥
)
𝑖,𝑗
+
𝑘2

2!
(
𝜕2𝑢

𝜕𝑦2
)
𝑖,𝑗

−
𝑘3

3!
(
𝜕3𝑢

𝜕𝑦3
)
𝑖,𝑗

+
𝑘4

4!
(
𝜕4𝑢

𝜕𝑦4
)
𝑖,𝑗

+..

 accordingly we get

(
𝜕𝑢

𝜕𝑦
)
𝑖,𝑗

𝑢𝑖,𝑗+1−𝑢𝑖,𝑗

𝑘

(
𝜕𝑢

𝜕𝑦
)
𝑖,𝑗

𝑢𝑖,𝑗−𝑢𝑖,𝑗−1

𝑘

As first order approximations error 0(k). By substracting we get

(
𝜕𝑢

𝜕𝑦
)
𝑖,𝑗

𝑢𝑖,𝑗−𝑢𝑖,𝑗−1

𝑘

As the second order finite difference approximation error O(k2)

By adding we get

(
𝜕2𝑢

𝜕𝑦2
)
𝑖,𝑗

𝑢𝑖,𝑗−1 − 2𝑢𝑖,𝑗 + 𝑢𝑖,𝑗+1

𝑘2

As second order finite difference approximation with error O(k2)

Further we observe that if we have time variable t, we get for ut(x,t) as

(
𝜕𝑢

𝜕𝑡
)
𝑖,𝑗

𝑢𝑖,𝑗+1−𝑢𝑖,𝑗

𝑘

(
𝜕𝑢

𝜕𝑡
)
𝑖,𝑗

𝑢𝑖,𝑗−𝑢𝑖,𝑗−1

𝑘

Are first order approximations with error O(k) and

(
𝜕𝑢

𝜕𝑡
)
𝑖,𝑗

𝑢𝑖,𝑗−1−2𝑢𝑖,𝑗 +𝑢𝑖,𝑗+1

𝑘2

As the second order approximation with error O(k2)

Writing u(x,y)=u (ih,jk) as simply 𝑢𝑖,𝑗 the above approximations become

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

 180 Numerical Methods and Programming in

C++

𝑢𝑥 =
𝑢𝑖+1,𝑗 − 𝑢𝑖,𝑗

ℎ
+ 𝑂(ℎ)…… . (1)

𝑢𝑥 =
𝑢𝑖,𝑗 − 𝑢𝑖−1,𝑗

ℎ
+ 𝑂(ℎ)…… . (2)

𝑢𝑥 =
𝑢𝑖+1,𝑗−𝑢𝑖−1,𝑗

2ℎ
+ 𝑂(ℎ2)………(3)

𝑎𝑛𝑑 𝑢𝑥𝑥 =
𝑢𝑖−1,𝑗−2𝑢𝑖,𝑗+𝑢𝑖+1,𝑗

ℎ2
+ 𝑂(ℎ2)…….(4)

Similarly we have the approximations

𝑢𝑦 =
𝑢𝑖,𝑗+1−𝑢𝑖,𝑗

𝑘
+𝑂(𝑘) ………(5)

𝑢𝑦 =
𝑢𝑖,𝑗−𝑢𝑖,𝑗−1

𝑘
+𝑂(𝑘)…….(6)

𝑢𝑦 =
𝑢𝑖,𝑗+1 − 𝑢𝑖,𝑗−1

2𝑘
+ 𝑂(𝑘2)…… . (7)

𝑎𝑛𝑑 𝑢𝑦𝑦 =
𝑢𝑖,𝑗−1 − 2𝑢𝑖,𝑗 + 𝑢𝑖,𝑗+1

𝑘2
+𝑂(𝑘2) …… . (8)

We can now obtain the finite difference analogues of partial differential equations by replacing

the derivatives in any equation by their corresponding difference equations (1) to (8).

Definitions:

Order of finite difference method: the minimum order of finite difference approximation used

is called the Order of finite difference method.

Explict method: if a solution at (j+1) stage is obtained using solution upto (j) stage, we say

explicit method and we get explicit solution.

Implict method: if solution at (j+1) stage requires solutions upto (j+1) stage we say implicit

method. On applying this implicit method we get system of algebraic equations which will

produce the solution of (j+1) stage.

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

 181 Numerical Methods and Programming in

C++

Elliptic Equations

The laplace Equations

∇2𝑢 =
𝜕2𝑢

𝜕𝑥2
+
𝜕2𝑢

𝜕𝑦2
= 0……(1)

 Or 𝑢𝑥𝑥 + 𝑢𝑦𝑦 = 0……(2)

 Are examples of elliptic partial differential equations

Laplace equation arise in steady state flow and potential problems. Poisson’s equation arises in

fluid mechanics, electricity and magnetism.

Consider a rectangular region R for which u(x,y) is known as the boundary. Divide this region

into a network of small squares of side h. replacing the derivatives in (1) by their difference

approximations we have

1

ℎ2
[𝑢𝑖+𝑗,𝑗 − 𝑢𝑖−𝑗,𝑗] +

1

𝑘2
[𝑢𝑖,𝑗+1 − 2𝑢𝑖,𝑗 + 𝑢𝑖,𝑗 − 1] = 0

 If h=k this gives

𝑢𝑖,𝑗 =
1

4
[𝑢𝑖−1,𝑗 + 𝑢𝑖+1,𝑗 + 𝑢𝑖,𝑗−1 + 𝑢𝑖,𝑗+1]… . . (3)

This shows that the value of u at any interior mesh point is the average of its four nearest

neighbours. That is each u value at any interior point is the average of the values of u at four

neighbouring points to the left, right, above and below. Equ (3) called the standard five point

formula (SFPF)

 u
i,j+1

 u
i-1,j u

i,j u
i+1,j

 u
i,j-1

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

 182 Numerical Methods and Programming in

C++

Diagonal Five Point Formula (DFPF)

Sometimes a formula similar to (3) is used which is given by

𝑢𝑖,𝑗 =
1

4
[𝑢𝑖−1,𝑗−1 + 𝑢𝑖−1,𝑗+1 + 𝑢𝑖+1,𝑗−1 + 𝑢𝑖+1,𝑗+1]… . . (4)

This shows that the value of 𝑢𝑖,𝑗 is the average of its values at the four neightbouring diagonal

mesh points. Equ (4) called the diagonal five-point formula.

 ui-1,j+1 ui+1,j+1

u
i,j

 ui-1,j-1

 ui+1,j-1

4.10. SOLUTION OF LAPLACE’s EQUATION (By Leibmann’s Iterative Method)

We wish to solve the Laplace’s equation

𝑢𝑥𝑥 + 𝑢𝑦𝑦 = 0… . . (1)

 In a bounded region R with boundary C

Also let the value of u be specified everywhere on C (or atleast at the grid points in the boundary).

For simplicity let R be a square region so that it can be divided into a network of small squares

of side h. Let the values of u(x,y) on the boundary C be given by b1, b2,…. b16. Also let the values

of u at the interior mesh points or grid points be u1, u2,…. u9

To start the iteration process, we first compute rough values at the interior mesh-points and then

we improve them by iterative process mostly using standard five point formula.

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

 183 Numerical Methods and Programming in

C++

Find u5 first: 𝑢5 =
1

4
(𝑏3 + 𝑏1 + 𝑏11 + 𝑏15) using SFPF

Knowing u5 we find 𝑢1 + 𝑢3 + 𝑢7 + 𝑢9 (values at the center of the four larger inner squares) by

using diagonal five point formula

𝑢1 =
1

4
(𝑏3 + 𝑏15 + 𝑏1 + 𝑢5) using DFPF

𝑢3 =
1

4
(𝑏5 + 𝑢5 + 𝑏3 + 𝑏7)

𝑢7 =
1

4
(𝑢5 + 𝑏13 + 𝑏11 + 𝑏15)

𝑢9 =
1

4
(𝑏1 + 𝑏11 + 𝑏9 + 𝑢5)

The remaining four values 𝑢2 + 𝑢4 + 𝑢6 + 𝑢8 are completed by using SFPF

𝑢2 =
1

4
(𝑏3 + 𝑢5 + 𝑢1 + 𝑢3)

𝑢4 =
1

4
(𝑢1 + 𝑢7 + 𝑢5 + 𝑏15)

𝑢6 =
1

4
(𝑢3 + 𝑢9 + 𝑢5 + 𝑏7)

𝑢8 =
1

4
(𝑢5 + 𝑏11 + 𝑢7 + 𝑢9)

Having found all the nine values of 𝑢𝑖,𝑗 once their accuracy is imporved by using the iterative

formula to solve (3) given by

𝑢𝑖,𝑗
(𝑛+1)

=
1

4
[𝑢𝑖−1,𝑗

𝑛+1 + 𝑢𝑖+1,𝑗
1 +𝑢𝑖,𝑗+1

𝑛+1 + 𝑢𝑖,𝑗−1
𝑛]……(A)

Where the superscript u denotes the iteration number.

It utilises the latest iterative value available values of u to use in the formula (A).

Equation (A) is called Leibmann’s iteration process. The process is repeated till the difference

between two consecutive iterates becomes negligible.

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

 184 Numerical Methods and Programming in

C++

Find the values of u(x,y) satisfying the Laplace’s equation ∇2𝑢 = 0 at the pivotal points of a

square region, with boundary values as shown in the following figure.

Let 𝑢1,𝑢2…𝑢9 be the values of u at the interest mesh points or grid points. We will first find

rough values of u and then proceed to refine them

Finding intial values:

𝑢5 =
1

4
 (0 + 17 + 21 + 12.1) = 12.5 (SFPF)

𝑢1 =
1

4
 (0 + 𝑢5 + 0 + 17) (DFPF)

=
1

4
 (12.5 + 17.0) = 7.4

𝑢3 =
1

4
 (𝑢5 + 18.6 + 17 + 21) =

1

4
 (12.5 + 18.6 + 17 + 21) = 17.3 (DFPF)

𝑢7 =
1

4
 (0 + 𝑢5 + 0 + 12.1) =

1

4
 (0 + 12.5 + 0 + 12.1) = 6.2

𝑢9 =
1

4
 (12.1 + 21.0 + 𝑢5 + 9.0) =

1

4
 (12.1 + 21.0 + 12.5 + 9.0) = 13.7

𝑢2 =
1

4
 (17.0 + 𝑢5 + 𝑢1 + 𝑢3) =

1

4
 (17.0 + 12.5 + 7.4 + 17.3) = 13.6

𝑢4 =
1

4
 (𝑢1 + 𝑢7 + 0 + 𝑢5) =

1

4
 (7.4 + 6.2 + 0 + 12.5) = 6.5

𝑢6 =
1

4
 (12.5 + 21.0 + 17.3 + 13.7) = 16.1

𝑢8 =
1

4
 (12.5 + 12.1 + 6.2 + 13.7) = 11.1

Now we have got the rough values at all interior mesh-points and already we possess the

boundary values. We will now improve the values by iteration process using SFPF taking into

account the latest available values of u.

𝑢1
(𝑛+1)

=
1

4
[0 + 𝑢2

(𝑛)
+ 11.1 + 𝑢4

(𝑛)
]

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

 185 Numerical Methods and Programming in

C++

𝑢2
(𝑛+1)

=
1

4
[𝑢1

(𝑛+1)
+ 𝑢3

(𝑛)
+ 17.0 + 𝑢5

(𝑛)
]

𝑢3
(𝑛+1)

=
1

4
[𝑢2

(𝑛)
+ 21.9 + 19.7 + 𝑢6

(𝑛)
]

𝑢4
(𝑛+1)

=
1

4
[0 + 𝑢5

(𝑛)
+ 𝑢1

(𝑛+1)
+ 𝑢7

(𝑛)
]

𝑢5
(𝑛+1)

=
1

4
[𝑢4

(𝑛+1)
+ 𝑢6

(𝑛)
+ 𝑢2

(𝑛+1)
+ 𝑢8

(𝑛)
]

𝑢6
(𝑛+1)

=
1

4
[𝑢5

(𝑛+1)
+ 21 + 𝑢3

(𝑛+1)
+ 𝑢9

(𝑛)
]

𝑢7
(𝑛+1)

=
1

4
[0 + 𝑢8

(𝑛)
+ 𝑢4

(𝑛+1)
+ 8.7]

𝑢8
(𝑛+1)

=
1

4
[𝑢7

(𝑛+1)
+ 𝑢9

(𝑛)
+ 𝑢5

(𝑛+1)
+ 12.1]

𝑢9
(𝑛+1)

=
1

4
[𝑢8

(𝑛+1)
+ 17.0 + 𝑢6

(𝑛+1)
+ 12.8]

First Iteration(put n=0)

𝑢1
(1)
=
1

4
[0 + 𝑢2

(0)
+ 11.1 + 𝑢4

(0)
] =

1

4
[0 + 𝑢2 + 11.1 + 𝑢4] =

1

4
[0 + 13.6 + 11.6 + 6.5]

= 7.8

𝑢2
(1)
=
1

4
[𝑢1

(1)
+ 𝑢3 + 17.0 + 𝑢5

(1)
] = 13.7

𝑢3
(1)
=
1

4
[𝑢2

(1)
+ 21.9 + 19.7 + 𝑢6

(1)
] = 17.9

𝑢4
(1)
=
1

4
[0 + 𝑢5

(1)
+ 𝑢1

(1)
+ 𝑢7

(1)
] = 6.6

𝑢5
(𝑛+1)

=
1

4
[𝑢4

(1)
+ 𝑢6

(1)
+ 𝑢2

(1)
+ 𝑢8

(1)
] = 11.9

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

 186 Numerical Methods and Programming in

C++

𝑢6
(1)
=
1

4
[𝑢5

(1)
+ 21 + 𝑢3

(1)
+ 𝑢9

(1)
] = 16.1

𝑢7
(1)
=
1

4
[0 + 𝑢8

(1)
+ 𝑢4

(1)
+ 8.7] = 6.6

𝑢8
(1)
=
1

4
[𝑢7

(1)
+ 𝑢9

(1)
+ 𝑢5

(1)
+ 12.1] = 11.1

𝑢9
(1)
=
1

4
[𝑢8

(1)
+ 17.0 + 𝑢6

(1)
+ 12.8] = 14.3

Second Iteration

𝑢1
(2)
=
1

4
[0 + 11.1 + 13.7 + 6.6] = 7.9

𝑢2
(2)
=
1

4
[17.0 + 17.9 + 7.9 + 11.9] = 13.7

𝑢3
(2)
=
1

4
[13.7 + 19.7 + 21.9 + 16.1] = 17.9

𝑢4
(2)
=
1

4
[7.9 + 0 + 11.9 + 6.6] = 6.6

𝑢5
(2)
=
1

4
[13.7 + 6.6 + 16.1 + 11.1] = 11.9

𝑢6
(2)
=
1

4
[11.9 + 17.9 + 21.0 + 14.3] = 16.3

𝑢7
(2)
=
1

4
[0 + 6.6 + 11.1 + 8.7] = 6.6

𝑢8
(2)
=
1

4
[6.6 + 11.9 + 14.3 + 12.1] = 11.2

𝑢9
(2)
=
1

4
[11.2 + 16.3 + 17.0 + 12.8] = 14.3

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

 187 Numerical Methods and Programming in

C++

Third Iteration (Put n=2)

𝑢1
(3)
=
1

4
[0 + 11.1 + 13.7 + 6.6] = 7.9

𝑢2
(3)
=
1

4
[17.0 + 17.9 + 7.9 + 11.9] = 13.7

𝑢3
(3)
=
1

4
[13.7 + 19.7 + 21.9 + 16.1] = 17.9

𝑢4
(3)
=
1

4
[7.9 + 0 + 11.9 + 6.6] = 6.6

𝑢5
(3)
=
1

4
[13.7 + 6.6 + 16.1 + 11.1] = 11.9

𝑢6
(3)
=
1

4
[11.9 + 17.9 + 21.0 + 14.3] = 16.3

𝑢7
(3)
=
1

4
[0 + 6.6 + 11.1 + 8.7] = 6.6

𝑢8
(3)
=
1

4
[6.6 + 11.9 + 14.3 + 12.1] = 11.2

𝑢9
(3)
=
1

4
[11.2 + 16.3 + 17.0 + 12.8] = 14.3

Since the values obtained in the second and third iterations are same, we stop the procedure.

Hence 𝑢1 = 7.9, 𝑢2 = 13.7, 𝑢3 = 17.9, 𝑢4 = 6.6, 𝑢5 = 11.9, 𝑢6 = 16.3, 𝑢7 = 6.6, 𝑢8 =

11.2, 𝑢9 = 14.3

Example 2: Evaluate the function u(x,y) satisfying ∇2𝑢 = 0 at the pivotal points given the

boundary values as follows:

Let 𝑢1,𝑢2,𝑢3,𝑢4, be the values of u at the interest mesh points or grid points.

To get the initial values of 𝑢1,𝑢2,𝑢3,𝑢4, we assume that 𝑢4 = 0 (or any other u)

Then

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

 188 Numerical Methods and Programming in

C++

𝑢1 =
1

4
 (1000 + 0 + 1000 + 2000) = 1000 (DFPF)

𝑢2 =
1

4
 (1000 + 500 + 1000 + 0) = 625 (SFPF)

𝑢3 =
1

4
 (2000 + 0 + 1000+ 500) = 875 (SFPF)

𝑢4 =
1

4
 (875 + 0 + 625 + 0) = 375 (SFPF)

We carry out the iteration process using the formulae

𝑢1
(𝑛+1)

=
1

4
[2000 + 𝑢2

(𝑛)
+ 1000+ 𝑢3

(𝑛)
]

𝑢2
(𝑛+1)

=
1

4
[𝑢1

(𝑛+1)
+ 500 + 1000 + 𝑢4

(𝑛)
]

𝑢3
(𝑛+1)

=
1

4
[2000 + 𝑢4

(𝑛)
+ 𝑢1

(𝑛+1)
+ 500]

𝑢4
(𝑛+1)

=
1

4
[𝑢3

(𝑛+1)
+ 0+ 𝑢2

(𝑛+1)
+ 0]

First iteration (put n=0)

𝑢1
(1)
=
1

4
[2000+ 625 + 1000+ 875] = 1125

𝑢2
(1)
=
1

4
[1125+ 500 + 1000+ 375] = 750

𝑢3
(1)
=
1

4
[2000+ 375 + 1125+ 500] = 1000

𝑢4
(1)
=
1

4
[1000+ 0 + 750 + 0] = 438

Second iteration (put n=1)

𝑢1
(2)
=
1

4
[2000+ 750 + 1000+ 1000] = 1188

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

 189 Numerical Methods and Programming in

C++

−
∇

𝑢2
(2)
=
1

4
[1188+ 500 + 1000+ 438] = 782

𝑢3
(2)
=
1

4
[2000+ 438 + 1188+ 500] = 1032

𝑢4
(2)
=
1

4
[1032+ 0 + 782 + 0] = 454

Similarly

𝑢1
(3)
= 1204,𝑢2

(3)
= 789, 𝑢3

(3)
= 1040,𝑢4

(3)
= 458

𝑢1
(4)
= 1207,𝑢2

(4)
= 791, 𝑢3

(4)
= 1041,𝑢4

(4)
= 458

𝑢1
(5)
= 1208,𝑢2

(5)
= 791.5, 𝑢3

(5)
= 1041.5,𝑢4

(5)
= 458.25

Thus there is negligible difference between the values obtained in the fourth and fifth iterations.

Hence 𝑢1 = 1208,𝑢2 = 792,𝑢3 = 1042, 𝑢4 = 458

REVIEW QUESTIONS

1. Write the diagonal five point-formula to solve the Laplace equation 𝑢𝑥𝑥 + 𝑢𝑦𝑦 = 0 and

explain the procedure to solve it.

4.11. Solutions of Poisson’s Equation

Poisson’s Equation

If we replace E with V in the differential form of Gauss’s Law we get Poisson’s

Equa- tion:

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

 190 Numerical Methods and Programming in

C++

Where the Laplacian operator reads in Cartesians ∇2 = ∂2/∂x2 + ∂2/∂y2 + ∂2/∂z2

It relates the second derivatives of the potential to the local charge density.

In a region absent of free charges it reduces to Laplace’s equation:

Note that one solution is a uniform potential V = V0, but this would only apply to the

case where there are no free charges anywhere. More generally we have to solve Laplace’s

equation subject to certain boundary conditions and this yields non-trivial solutions.

Poisson’s and Laplace’s equations are among the most important equations in physics, not

just EM: fluid mechanics, diffusion, heat flow etc. They can be studied using the techniques

you have seen Physical Mathematics e.g. separation of variables, orthogonal polynomials

etc.,

4.12. GAUSS SEIDAL ITERATION METHOD

This is a modification of Gauss Jacobi method.

We will consider the system of equations

𝒂𝟏𝟏𝒙𝟏 +𝒂𝟏𝟐𝒙𝟐+𝒂𝟏𝟑𝒙𝟑 = 𝒃𝟏

𝒂𝟐𝟏𝒙𝟏 +𝒂𝟐𝟐𝒙𝟐+𝒂𝟐𝟑𝒙𝟑 = 𝒃𝟐

𝒂𝟑𝟏𝒙𝟏 +𝒂𝟑𝟐𝒙𝟐+𝒂𝟑𝟑𝒙𝟑 = 𝒃𝟑

Where the diagonal coefficients are not zero and are large compared to other

coefficients. Such a system is called a diagonally dominant system.

The system of equ(1) may be written as

𝐱𝟏 =
𝟏

𝐚𝟏𝟏
[𝐛𝟏 −𝐚𝟏𝟐𝐱𝟐−𝐚𝟏𝟑𝐱𝟑]

1

2

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

 191 Numerical Methods and Programming in

C++

𝐱𝟐 =
𝟏

𝐚𝟐𝟐
[𝐛𝟐 −𝐚𝟐𝟏𝐱𝟏−𝐚𝟐𝟑𝐱𝟑]

𝐱𝟑 =
𝟏

𝐚𝟑𝟑
[𝐛𝟑 −𝐚𝟑𝟏𝐱𝟏−𝐚𝟑𝟐𝐱𝟐]

Let the initial approximate solution be 𝒙𝟏
(𝟎)
, 𝒙𝟐
(𝟎)
, 𝒙𝟑
(𝟎)

. Substituting 𝒙𝟐
(𝟎)
, 𝒙𝟑
(𝟎)

 in

the first equation of (2) we get

𝐱𝟐
(𝟏)
=

𝟏

𝐚𝟏𝟏
[𝐛𝟏 −𝐚𝟏𝟐𝐱𝟐

(𝟎)−𝐚𝟏𝟑𝐱𝟑
(𝟎)] ………3(a)

This is taken as the first approximation of x1

Substituting 𝐱𝟏
(𝟏)
𝐟𝐨𝐫 𝐱𝟏 𝐚𝐧𝐝 𝐱𝟑

(𝟎)
𝐟𝐨𝐫 𝐱𝟑

(𝟎)
 in the second equation of (2) we get

𝐱𝟐
(𝟏)
=

𝟏

𝐚𝟐𝟐
[𝐛𝟐 −𝐚𝟐𝟏𝐱𝟏

(𝟏)−𝐚𝟐𝟑𝐱𝟑
(𝟎)]……….3(b)

This is taken as the first approximation of x2.

Next substituting 𝐱𝟏
(𝟏)
𝐟𝐨𝐫 𝐱𝟏 𝐚𝐧𝐝 𝐱𝟐

(𝟏)
𝐟𝐨𝐫 𝐱𝟐 in the last equation of (2) we get

𝐱𝟑
(𝟏)
=

𝟏

𝐚𝟐𝟐
[𝐛𝟑 −𝐚𝟑𝟏𝐱𝟏

(𝟏)−𝐚𝟑𝟐𝐱𝟐
(𝟏)]…….3(c)

This is taken as the first approximation of x3.

The values of obtained in 3(a),3(b),3(c) constitute the first iterates of the solution.

Proceeding in the same way, we get successive iterates.

The (k+1) iterates are given by

𝒙𝟏
(𝒌+𝟏)

=
𝟏

𝒂𝟏𝟏
[𝒃𝟏 −𝒂𝟏𝟐𝒙𝟐

(𝒌)−𝒂𝟏𝟑𝒙𝟑
(𝒌)]

𝒙𝟐
(𝒌+𝟏)

=
𝟏

𝒂𝟐𝟐
[𝒃𝟐 −𝒂𝟐𝟏𝒙𝟏

(𝒌+𝟏)−𝒂𝟐𝟑𝒙𝟑
(𝒌)]

𝒙𝟑
(𝒌+𝟏)

=
𝟏

𝒂𝟑𝟑
[𝒃𝟑 −𝒂𝟑𝟏𝒙𝟏

(𝒌+𝟏) −𝒂𝟑𝟐𝒙𝟐
(𝒌+𝟏)]

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

 192 Numerical Methods and Programming in

C++

The iteration process is stopped when the desired order of approximation is

reached or two successive iterations are nearly the same. The final values of

𝒙𝟏, 𝒙𝟐, 𝒙𝟑 so obtained constitute an approximate solution of the system(2)

This method can be generalized to a system of n equations n unknowns. The

method is known as Gauss-Seidal iteration method. This method is also called

method of successive displacement.

Example 1: Use Gauss Seidal iteration method to solve the system.

10x+y+z=12

2x+10y+z=13

2x+2y+10z=14

Solution: The given system is diagonally dominant and we write it as

𝒙 =
𝟏

𝟏𝟎
[𝟏𝟐− 𝒚− 𝒛]…….(1)

𝒚 =
𝟏

𝟏𝟎
[𝟏𝟑−𝟐𝒙− 𝒛]…….(2)

𝒛 =
𝟏

𝟏𝟎
[𝟏𝟒− 𝟐𝒙− 𝟐𝒚]……(3)

We start iteration by taking y=0,z=0 in (1) we get

𝒙(𝟏) = 𝟏.𝟐

Putting 𝒙 = 𝒙𝟏 = 𝟏.𝟐, 𝒛 = 𝟎 𝒊𝒏 (𝟐) we get

𝒚(𝟏) = 𝟏.𝟎𝟔

Putting 𝒙 = 𝟏.𝟐, 𝒚 = 𝟏.𝟎𝟔 𝒊𝒏 (𝟑) we get

𝒛(𝟏) = 𝟎.𝟗𝟓

Now taking the 𝒚(𝟏), 𝒛(𝟏)as the initial values in (1) we get

𝒙(𝟐) =
𝟏

𝟏𝟎
[𝟏𝟐− 𝟏.𝟎𝟔− 𝟎.𝟗𝟓]=0.999

4

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

 193 Numerical Methods and Programming in

C++

taking the 𝒙 = 𝒙(𝟐), 𝒛 = 𝒛(𝟏) 𝒊𝒏 (𝟐) we get

𝒚(𝟐) =
𝟏

𝟏𝟎
[𝟏𝟑− 𝟏.𝟗𝟗𝟖−𝟎.𝟗𝟓]=1.005

taking the 𝒙 = 𝒙(𝟐), 𝒚 = 𝒚(𝟐) 𝒊𝒏 (𝟑) we get

𝒛(𝟐) =
𝟏

𝟏𝟎
[𝟏𝟒− 𝟏.𝟗𝟗𝟖− 𝟐.𝟎𝟏𝟎]=0.999

Again taking the 𝒙(𝟐), 𝒚(𝟐), 𝒛(𝟐) as the initial values we get

𝒙(𝟑) =
𝟏

𝟏𝟎
[𝟏𝟐− 𝟏.𝟎𝟎𝟓− 𝟎.𝟗𝟗𝟗]=0.996=1.00

𝒚(𝟑) =
𝟏

𝟏𝟎
[𝟏𝟑− 𝟐.𝟎 − 𝟎.𝟗𝟗𝟗]=1.0001=1.00

𝒛(𝟑) =
𝟏

𝟏𝟎
[𝟏𝟒− 𝟐−𝟐]=1.00

Similarly we find the fourth approximation of x,y,z and get them as 𝒙(𝟒) =

𝟏.𝟎𝟎,𝒚(𝟒) = 𝟏.𝟎𝟎,𝒛(𝟒) = 𝟏.𝟎𝟎

The solution of the equation is x=1,y=1,z=1

Example2: Solve the following systems of equations by Gauss seidal method

𝟖𝒙𝟏−𝟑𝒙𝟐+𝟐𝒙𝟑 = 𝟐𝟎,𝟒𝒙𝟏+𝟏𝟏𝒙𝟐−𝒙𝟑 = 𝟐𝟎,𝟔𝒙𝟏+𝟑𝒙𝟐+𝟏𝟐𝒙𝟑 = 𝟑𝟔

The given system is diagonally dominant and we write it as

𝒙𝟏 =
𝟏

𝟖
(𝟐𝟎+ 𝟑𝒙𝟐−𝟐𝒙𝟑)

𝒙𝟐 =
𝟏

𝟏𝟏
(𝟑𝟑− 𝟒𝒙𝟏+𝒙𝟑)

𝒙𝟑 =
𝟏

𝟏𝟐
(𝟑𝟔− 𝟔𝒙𝟏−𝟑𝒙𝟐)

We start iteration by taking 𝒙𝟐 = 𝟎,𝒙𝟑 = 𝟎 𝒊𝒏 (𝟏)𝒕𝒐 𝒈𝒆𝒕

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

 194 Numerical Methods and Programming in

C++

𝒙𝟏
(𝟏)
=
𝟏

𝟖
 𝑿 𝟐𝟎 = 𝟐.𝟓

Putting 𝒙𝟏 = 𝟐.𝟓, 𝒙𝟑 = 𝟎 𝒊𝒏 (𝟐)𝒕𝒐 𝒈𝒆𝒕

𝒙𝟐
(𝟏)
=
𝟏

𝟏𝟏
 𝑿 𝟐𝟑 = 𝟐.𝟏

Putting 𝒙𝟏 = 𝟐.𝟓, 𝒙𝟐 = 𝟐.𝟏 𝒊𝒏 (𝟑)𝒕𝒐 𝒈𝒆𝒕

𝒙𝟑
(𝟏)
=
𝟏

𝟏𝟐
 (𝟑𝟔− 𝟏𝟓−𝟔.𝟑) = 𝟏.𝟐

The required solution is

𝒙𝟏 = 𝟐.𝟗𝟗𝟗𝟖, 𝒙𝟐 = 𝟐.𝟎𝟎𝟎𝟎,𝒙𝟑 = 𝟏.𝟎𝟎𝟎𝟎

EXERCISES

Using Gauss seidal method solve the following system of equations

1.10x+2y+z=9, 2x+20y-2z=-44, -2x+3y+10z=22

2. 25x+2y+2z=69, 2x+10y+z=63,x+y+z=43

3. 20x+2y+6z=28, x+20y+9z=-23, 2x-7y-20z=-57

SOLUTIONS

1. x=1, y=-2,z=3

2. x=0.9953, y=2.116, z=39.8931

3. x=0.5149, y=-2.9451, z=3.9323

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

 195 Numerical Methods and Programming in

C++

Unit -V

5.1 Program Structure

A typical C++ program consists of the following sections:

1. Preprocessor Directives:

These are commands to the compiler, starting with #, that tell it to include libraries or perform

specific tasks before compiling the code.

Example: #include <iostream>

2. Namespace Declaration:

Specifies which namespace is being used, commonly std for standard library functions.

Example: using namespace std;

3. Global Declarations:

Variables or constants declared outside any function and accessible throughout the program.

Example: int globalVariable = 10;

4. Function Declarations:

Functions are declared before they are defined to inform the compiler about their return type,

name, and parameters.

Example: void display();

5. Main Function:

The entry point of any C++ program where execution begins.

Example:

int main() {

 cout << "Hello, World!";

 return 0;

}

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

 196 Numerical Methods and Programming in

C++

6. Function Definitions:

Contains the actual implementation of declared functions.

Example:

void display() {

 cout << "Function Called!";

}

Header Files

Header files in C++ are files with a .h extension (or standard library headers like <iostream>

with no extension). They contain declarations of functions, classes, and constants that can be

used in multiple files.

Types of Header Files

1. Standard Library Header Files:

Built-in headers provided by C++.

Examples:

<iostream>: For input/output operations.

<cmath>: For mathematical functions.

<vector>: For using the std::vector container.

Usage:

#include <iostream>

2. User-Defined Header Files:

Created by the programmer to reuse code across multiple programs.

Example:

myHeader.h:

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

 197 Numerical Methods and Programming in

C++

void greet() {

 cout << "Hello from myHeader!";

}

Usage in program:

#include "myHeader.h"

5.2 Basic Data Types:

Int : Stores whole numbers (integers), e.g., 1, 2, -5, 100.

Float : Stores single-precision floating-point numbers (decimals), e.g., 3.14, 2.718.

Double : Stores double-precision floating-point numbers (decimals with higher precision), e.g.,

3.141592653589793.

Char : Stores single characters, e.g., 'a', 'b', 'Z'.

Bool : Stores boolean values (true or false).

Void : Represents the absence of a type.

Modified Data Types:

Signed int : Same as int, but explicitly specifies that the integer can be positive or negative.

Unsigned int : Stores only non-negative integers.

Short int : Stores smaller integers, using less memory than int.

Long int : Stores larger integers, using more memory than int.

Long long int : Stores even larger integers than long int.

5.3 Opertors:

1. Arithmetic Operators:

+: Addition, -: Subtraction, *: Multiplication, /: Division, and %: Modulus (remainder after

division).

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

 198 Numerical Methods and Programming in

C++

2. Assignment Operators:

=: Assignment

+=: Add and assign

-=: Subtract and assign

*=: Multiply and assign

/=: Divide and assign

%=: Modulus and assign

3. Relational Operators:

==: Equal to

!=: Not equal to

<: Less than

>: Greater than

<=: Less than or equal to

>=: Greater than or equal to

4. Logical Operators:

&&: Logical AND, ||: Logical OR, and !: Logical NOT.

5. Bitwise Operators:

&: Bitwise AND, |: Bitwise OR, ^: Bitwise XOR, ~: Bitwise NOT, <<: Left shift, and >>: Right

shift.

6. Increment/Decrement Operators:

++: Increment (pre-increment, post-increment)

--: Decrement (pre-decrement, post-decrement)

7. Conditional Operator (Ternary Operator):

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

 199 Numerical Methods and Programming in

C++

?:: (condition) ? (expression1) : (expression2)

8. Other Operators:

sizeof: Returns the size of a variable or type

typeid: Returns the type of a variable

::: Scope resolution operator

.*: Pointer to member operator

->: Member access operator

new: Dynamic memory allocation

delete: Dynamic memory deallocation

(): Function call operator

[]: Array subscript operator

5.4 Decision Making Statements:

if statement :Executes a block of code if a specified condition is true.

if-else statement :Executes one block of code if a condition is true, and another block if it's

false.

if-else if-else ladder :Allows you to check multiple conditions and execute different code

blocks based on the first true condition.

switch statement :Provides a way to select from multiple code blocks based on the value of

an expression.

Example of decision making:

#include <iostream>

int main() {

 int num = 10;

 if (num > 0) {

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

 200 Numerical Methods and Programming in

C++

 std::cout << "The number is positive." << std::endl;

 } else if (num < 0) {

 std::cout << "The number is negative." << std::endl;

 } else {

 std::cout << "The number is zero." << std::endl;

 }

 return 0;

}

Looping Statements:

for loop : Repeats a block of code a specific number of times.

while loop : Repeats a block of code as long as a specified condition is true.

do-while loop : Similar to a while loop, but it executes the code block at least once before

checking the condition.

Example of looping:

#include <iostream>

int main() {

 for (int i = 1; i <= 5; i++) {

 std::cout << i << " ";

 }

 std::cout << std::endl;

 int j = 1;

 while (j <= 5) {

 std::cout << j << " ";

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

 201 Numerical Methods and Programming in

C++

 j++;

 }

 std::cout << std::endl;

 return 0;

}

Arrays:

An array is a collection of elements of the same data type stored in contiguous memory locations.

You can access individual elements using their index, starting from 0.

Declaration: int numbers [5] = {1, 2, 3, 4, 5};

Strings:

C++ provides two ways to work with strings:

C-style strings: These are arrays of characters terminated by a null character (\0).

C++ strings (std::string): These are objects from the C++ Standard Library that provide a

more convenient and safer way to work with strings.

Declaration:

C-style: char name [] = "John";

C++ string: std::string name = "John";

Structures:

A structure is a user-defined data type that groups together variables of different data types.

It allows you to create complex data structures.

struct Employee {

 int id;

 std::string name;

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

 202 Numerical Methods and Programming in

C++

 double salary;

};

Pointers:

A pointer is a variable that stores the memory address of another variable.

They are essential for dynamic memory allocation and working with complex data structures.

Declaration:

int *ptr;

int x = 10; ptr = &x;

File Handling:

C++ provides file stream classes (ifstream, ofstream, and fstream) for reading from and writing

to files.

You can open files in various modes (read, write, append) and perform operations like reading,

writing, and seeking.

Example:

#include <iostream>

#include <fstream>

int main() {

 std::ofstream outfile("data.txt");

 outfile << "Hello, World!" << std::endl;

 outfile.close();

 std::ifstream infile("data.txt");

 std::string line;

 while (std::getline(infile, line)) {

 std::cout << line << std::endl;

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

 203 Numerical Methods and Programming in

C++

 }

 infile.close();

 return 0;

}

5.5 Newton-Raphson Method to find the root of a given algebraic or transcendental

equation.

#include <iostream>

#include <cmath>

#include <iomanip>

// Define the function for the equation

double f(double x) {

 // Example: Change as needed (e.g., x^3 - x - 1 for algebraic or cos(x) - x*exp(x) for

transcendental)

 return x * x * x - x - 1; // Example: x^3 - x - 1

}

// Define the derivative of the function

double f_prime(double x) {

 // Derivative of the function above

 return 3 * x * x - 1; // Example: 3x^2 - 1

}

// Newton-Raphson method

void newton_raphson(double initial_guess, double tolerance = 1e-6, int max_iterations = 100)

{

 double x = initial_guess;

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

 204 Numerical Methods and Programming in

C++

 int iteration = 0;

 double error = 1.0;

 std::cout << std::fixed << std::setprecision(6);

 std::cout << "Iteration\tX\t\tf(X)\t\tError\n";

 while (iteration < max_iterations && error > tolerance) {

 double fx = f(x);

 double fpx = f_prime(x);

 if (std::abs(fpx) < 1e-10) { // Avoid division by zero

 std::cout << "Derivative is too small; method fails.\n";

 return;

 }

 double x_new = x - fx / fpx;

 error = std::abs(x_new - x);

 std::cout << iteration + 1 << "\t\t" << x_new << "\t" << fx << "\t" << error << "\n";

 x = x_new;

 iteration++;

 }

 if (error <= tolerance) {

 std::cout << "\nRoot found: " << x << " after " << iteration << " iterations.\n";

 } else {

 std::cout << "\nMethod failed to converge after " << max_iterations << " iterations.\n";

 }

}

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

 205 Numerical Methods and Programming in

C++

// Main function

int main() {

 double initial_guess;

 // Example algebraic equation: x^3 - x - 1

 // Example transcendental equation: cos(x) - x*exp(x)

 std::cout << "Solving equation x^3 - x - 1 using Newton-Raphson method\n";

 std::cout << "Enter initial guess: ";

 std::cin >> initial_guess;

 newton_raphson(initial_guess);

 return 0;

}

Input

Enter initial guess: 1.5

Output

Solving equation x^3 - x - 1 using Newton-Raphson method

Enter initial guess: 1.5

Iteration X f(X) Error

1 1.347826 0.875000 0.152174

2 1.325201 0.015935 0.022625

3 1.324718 0.000011 0.000483

4 1.324718 0.000000 0.000000

Root found: 1.324718 after 4 iterations.

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

 206 Numerical Methods and Programming in

C++

5.6 Charging And Discharging of a Condenser By Euler’s Method

#include <iostream>

#include <cmath>

#include <iomanip>

// Function for charging of a capacitor

double charging(double q, double R, double C, double V) {

 return (V / R) - (q / (R * C)); // dq/dt = (V/R) - (q / (R*C))

}

// Function for discharging of a capacitor

double discharging(double q, double R, double C) {

 return -(q / (R * C)); // dq/dt = -(q / (R*C))

}

// Euler's Method Implementation

void euler_method(bool is_charging, double R, double C, double V, double q0, double dt, double

t_max) {

 double t = 0.0; // Start time

 double q = q0; // Initial charge on the capacitor

 double dq_dt; // Rate of change of charge

 std::cout << std::fixed << std::setprecision(6);

 std::cout << "Time(s)\tCharge(C)\n";

 while (t <= t_max) {

 std::cout << t << "\t" << q << "\n";

 // Compute dq/dt based on whether charging or discharging

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

 207 Numerical Methods and Programming in

C++

 if (is_charging) {

 dq_dt = charging(q, R, C, V);

 } else {

 dq_dt = discharging(q, R, C);

 }

 // Update charge using Euler's method

 q += dq_dt * dt;

 // Increment time

 t += dt;

 }

}

// Main function

int main() {

 double R, C, V, q0, dt, t_max;

 int mode;

 std::cout << "Charging and Discharging of a Capacitor using Euler's Method\n";

 std::cout << "Enter resistance (R) in ohms: ";

 std::cin >> R;

 std::cout << "Enter capacitance (C) in farads: ";

 std::cin >> C;

 std::cout << "Enter time step (dt) in seconds: ";

 std::cin >> dt;

 std::cout << "Enter maximum simulation time (t_max) in seconds: ";

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

 208 Numerical Methods and Programming in

C++

 std::cin >> t_max;

 std::cout << "Enter initial charge (q0) in coulombs: ";

 std::cin >> q0;

 std::cout << "Choose mode (1 for charging, 2 for discharging): ";

 std::cin >> mode;

 if (mode == 1) {

 std::cout << "Enter supply voltage (V) in volts: ";

 std::cin >> V;

 std::cout << "\nSimulating Charging...\n";

 euler_method(true, R, C, V, q0, dt, t_max);

 } else if (mode == 2) {

 std::cout << "\nSimulating Discharging...\n";

 euler_method(false, R, C, 0.0, q0, dt, t_max);

 } else {

 std::cerr << "Invalid mode selected. Please enter 1 or 2.\n";

 }

 return 0;

}

Input

Enter resistance (R) in ohms: 1000

Enter capacitance (C) in farads: 0.001

Enter time step (dt) in seconds: 0.01

Enter maximum simulation time (t_max) in seconds: 1

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

 209 Numerical Methods and Programming in

C++

Enter initial charge (q0) in coulombs: 0

Choose mode (1 for charging, 2 for discharging): 1

Enter supply voltage (V) in volts: 5

Output

Simulating Charging...

Time(s) Charge(C)

0.000000 0.000000

0.010000 0.004950

0.020000 0.009801

0.030000 0.014554

0.040000 0.019208

5.7 Radioactive Decay By Runge Kutta Fourth Order Method

#include <iostream>

#include <cmath>

#include <iomanip>

// Define the decay rate function (dy/dt = -k * y)

double decay_rate(double t, double y, double k) {

 return -k * y;

}

// Runge-Kutta 4th Order Method Implementation

void runge_kutta_4th_order(double y0, double t0, double t_max, double dt, double k) {

 double t = t0; // Start time

 double y = y0; // Initial amount of substance

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

 210 Numerical Methods and Programming in

C++

 double k1, k2, k3, k4; // RK4 coefficients

 std::cout << std::fixed << std::setprecision(6);

 std::cout << "Time(s)\tAmount\n";

 while (t <= t_max) {

 std::cout << t << "\t" << y << "\n";

 // Compute RK4 coefficients

 k1 = dt * decay_rate(t, y, k);

 k2 = dt * decay_rate(t + dt / 2.0, y + k1 / 2.0, k);

 k3 = dt * decay_rate(t + dt / 2.0, y + k2 / 2.0, k);

 k4 = dt * decay_rate(t + dt, y + k3, k);

 // Update y (amount of substance) using RK4 formula

 y = y + (k1 + 2 * k2 + 2 * k3 + k4) / 6.0;

 // Increment time

 t += dt;

 }

}

int main() {

 double y0, t0, t_max, dt, k;

 std::cout << "Radioactive Decay using Runge-Kutta Fourth Order Method\n";

 std::cout << "Enter initial amount of substance (y0): ";

 std::cin >> y0;

 std::cout << "Enter initial time (t0): ";

 std::cin >> t0;

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

 211 Numerical Methods and Programming in

C++

 std::cout << "Enter maximum simulation time (t_max): ";

 std::cin >> t_max;

 std::cout << "Enter time step (dt): ";

 std::cin >> dt;

 std::cout << "Enter decay constant (k): ";

 std::cin >> k;

 std::cout << "\nSimulating Radioactive Decay...\n";

 runge_kutta_4th_order(y0, t0, t_max, dt, k);

 return 0;

}

Input

Enter initial amount of substance (y0): 100

Enter initial time (t0): 0

Enter maximum simulation time (t_max): 10

Enter time step (dt): 1

Enter decay constant (k): 0.1

Output

Simulating Radioactive Decay...

Time(s) Amount

0.000000 100.000000

1.000000 90.483742

2.000000 81.873075

3.000000 74.081826

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

 212 Numerical Methods and Programming in

C++

4.000000 67.032155

5.000000 60.653066

6.000000 54.879359

7.000000 49.651638

8.000000 44.915841

9.000000 40.622090

10.000000 36.724327

5.8 Current in Wheatstone Bridge by Gauss Elimination Method

#include <iostream>

#include <iomanip>

#include <vector>

using namespace std;

// Function to perform Gauss Elimination

void gauss_elimination(vector<vector<double>>& matrix, vector<double>& currents, int n) {

 // Forward Elimination

 for (int i = 0; i < n; i++) {

 // Make the diagonal element 1 and scale the row

 double diag_element = matrix[i][i];

 for (int j = 0; j <= n; j++) {

 matrix[i][j] /= diag_element;

 }

 // Eliminate below the pivot

 for (int k = i + 1; k < n; k++) {

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

 213 Numerical Methods and Programming in

C++

 double factor = matrix[k][i];

 for (int j = 0; j <= n; j++) {

 matrix[k][j] -= factor * matrix[i][j];

 }

 }

 }

 // Back Substitution

 for (int i = n - 1; i >= 0; i--) {

 currents[i] = matrix[i][n];

 for (int j = i + 1; j < n; j++) {

 currents[i] -= matrix[i][j] * currents[j];

 }

 }

}

int main() {

 int n = 3; // Number of equations for the Wheatstone Bridge

 vector<vector<double>> matrix(n, vector<double>(n + 1)); // Augmented matrix

 vector<double> currents(n); // Solution vector for currents

 cout << "Current in Wheatstone Bridge by Gauss Elimination Method\n";

 // Input resistance and voltage

 cout << "Enter the augmented matrix row by row (coefficients and constants):\n";

 for (int i = 0; i < n; i++) {

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

 214 Numerical Methods and Programming in

C++

 cout << "Row " << i + 1 << ": ";

 for (int j = 0; j <= n; j++) {

 cin >> matrix[i][j];

 }

 }

 // Perform Gauss Elimination

 gauss_elimination(matrix, currents, n);

 // Output the results

 cout << "\nThe currents in the branches are:\n";

 for (int i = 0; i < n; i++) {

 cout << "I" << i + 1 << " = " << fixed << setprecision(6) << currents[i] << " A\n";

 }

 return 0;

}

Input

100 150 0 10

0 200 250 10

0 0 50 0

Output

I1 = 0.050000 A

I2 = 0.030000 A

I3 = 0.000000 A

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

 215 Numerical Methods and Programming in

C++

5.9 Cauchy's Constant by Least Square Method

#include <iostream>

#include <vector>

#include <iomanip>

#include <cmath>

using namespace std;

// Function to calculate Cauchy's constants using Least Squares Method

void cauchys_constant(const vector<double>& wavelengths, const vector<double>&

refractive_indices) {

 int n = wavelengths.size();

 if (n != refractive_indices.size() || n == 0) {

 cerr << "Error: Mismatched or empty data sets.\n";

 return;

 }

 // Variables for summation

 double sum_l_inv2 = 0.0, sum_l_inv4 = 0.0, sum_l_inv2_n = 0.0, sum_n = 0.0;

 // Compute summations

 for (int i = 0; i < n; i++) {

 double l_inv2 = 1.0 / (wavelengths[i] * wavelengths[i]); // 1/λ²

 double l_inv4 = l_inv2 * l_inv2; // (1/λ²)²

 sum_l_inv2 += l_inv2;

 sum_l_inv4 += l_inv4;

 sum_l_inv2_n += l_inv2 * refractive_indices[i];

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

 216 Numerical Methods and Programming in

C++

 sum_n += refractive_indices[i];

 }

 // Calculate determinants for constants A and B

 double denominator = n * sum_l_inv4 - sum_l_inv2 * sum_l_inv2;

 double A = (sum_l_inv4 * sum_n - sum_l_inv2 * sum_l_inv2_n) / denominator;

 double B = (n * sum_l_inv2_n - sum_l_inv2 * sum_n) / denominator;

 // Output the results

 cout << fixed << setprecision(6);

 cout << "Cauchy's Constants:\n";

 cout << "A = " << A << "\n";

 cout << "B = " << B << "\n";

}

int main() {

 int n;

 cout << "Cauchy's Constant Calculation using Least Squares Method\n";

 cout << "Enter the number of data points: ";

 cin >> n;

 vector<double> wavelengths(n), refractive_indices(n);

 // Input data

 cout << "Enter the wavelengths (in micrometers) and refractive indices:\n";

 for (int i = 0; i < n; i++) {

 cout << "Data Point " << i + 1 << ":\n";

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

 217 Numerical Methods and Programming in

C++

 cout << " Wavelength (λ): ";

 cin >> wavelengths[i];

 cout << " Refractive Index (n): ";

 cin >> refractive_indices[i];

 }

 // Perform the Least Squares calculation

 cauchys_constant(wavelengths, refractive_indices);

 return 0;

}

Input

Enter the number of data points: 3

Enter the wavelengths (in micrometers) and refractive indices:

Data Point 1:

 Wavelength (λ): 0.5

 Refractive Index (n): 1.6

Data Point 2:

 Wavelength (λ): 0.6

 Refractive Index (n): 1.55

Data Point 3:

 Wavelength (λ): 0.7

 Refractive Index (n): 1.53

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

 218 Numerical Methods and Programming in

C++

Output

Cauchy's Constants:

A = 1.500000

B = 0.020833

5.10 Evaluation of Integral by Simpson’s Method

#include <iostream>

#include <cmath>

#include <iomanip>

using namespace std;

// Define the function to integrate

double f(double x) {

 // Example: f(x) = x^2 (you can change this to any function)

 return x * x;

}

// Simpson's 1/3 Rule for Numerical Integration

double simpsons_rule(double a, double b, int n) {

 // Ensure n is even (Simpson's 1/3 Rule requires an even number of intervals)

 if (n % 2 != 0) {

 cerr << "Error: Number of intervals (n) must be even.\n";

 return -1;

 }

 double h = (b - a) / n; // Step size

 double sum = f(a) + f(b); // Initialize with f(a) and f(b)

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

 219 Numerical Methods and Programming in

C++

 // Summation for odd indices (4 * f(x_odd))

 for (int i = 1; i < n; i += 2) {

 sum += 4 * f(a + i * h);

 }

 // Summation for even indices (2 * f(x_even))

 for (int i = 2; i < n; i += 2) {

 sum += 2 * f(a + i * h);

 }

 return (h / 3.0) * sum;

}

int main() {

 double a, b;

 int n;

 cout << "Evaluation of Integral using Simpson's Rule\n";

 cout << "Enter the lower limit (a): ";

 cin >> a;

 cout << "Enter the upper limit (b): ";

 cin >> b;

 cout << "Enter the number of intervals (n, must be even): ";

 cin >> n;

 double result = simpsons_rule(a, b, n);

 if (result != -1) {

 cout << fixed << setprecision(6);

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

 220 Numerical Methods and Programming in

C++

 cout << "The value of the integral is: " << result << "\n";

 }

 return 0;

}

Input

Enter the lower limit (a): 0

Enter the upper limit (b): 1

Enter the number of intervals (n, must be even): 4

Output

The value of the integral is: 0.333333

Evaluation of Integral by Monto Carlo Method

#include <iostream>

#include <cmath>

#include <cstdlib>

#include <ctime>

#include <iomanip>

using namespace std;

// Define the function to integrate

double f(double x) {

 // Example: f(x) = x^2 (you can change this to any function)

 return x * x;

}

// Monte Carlo Method for Numerical Integration

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

 221 Numerical Methods and Programming in

C++

double monte_carlo_integration(double a, double b, int num_points) {

 double sum = 0.0;

 double range = b - a;

 // Seed the random number generator

 srand(static_cast<unsigned>(time(0)));

 // Generate random points and evaluate the function

 for (int i = 0; i < num_points; i++) {

 double x_random = a + static_cast<double>(rand()) / RAND_MAX * range; // Random

point in [a, b]

 sum += f(x_random);

 }

 // Compute the integral estimate

 return (range / num_points) * sum;

}

int main() {

 double a, b;

 int num_points;

 cout << "Evaluation of Integral using Monte Carlo Method\n";

 cout << "Enter the lower limit (a): ";

 cin >> a;

 cout << "Enter the upper limit (b): ";

 cin >> b;

 cout << "Enter the number of random points to generate: ";

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

 222 Numerical Methods and Programming in

C++

 cin >> num_points;

 double result = monte_carlo_integration(a, b, num_points);

 cout << fixed << setprecision(6);

 cout << "The estimated value of the integral is: " << result << "\n";

 return 0;

}

Input

Enter the lower limit (a): 0

Enter the upper limit (b): 1

Enter the number of random points to generate: 100000

Output

The estimated value of the integral is: 0.333258

5.11 Newton's Law of Cooling by Numerical Diffrentiation

#include <iostream>

#include <iomanip>

#include <cmath>

using namespace std;

// Function to compute the rate of cooling (dy/dt = -k(T - T_env))

double rate_of_cooling(double T, double T_env, double k) {

 return -k * (T - T_env);

}

// Newton's Law of Cooling using Numerical Differentiation (Euler's Method)

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

 223 Numerical Methods and Programming in

C++

void newtons_law_of_cooling(double T_initial, double T_env, double k, double dt, double

t_max) {

 double T = T_initial; // Initial temperature of the object

 double t = 0.0; // Start time

 cout << fixed << setprecision(6);

 cout << "Time(s)\tTemperature(C)\n";

 while (t <= t_max) {

 cout << t << "\t" << T << "\n";

 // Calculate the temperature change using the rate of cooling

 double dT_dt = rate_of_cooling(T, T_env, k);

 T += dT_dt * dt; // Update temperature using Euler's Method

 // Increment time

 t += dt;

 }

}

int main() {

 double T_initial, T_env, k, dt, t_max;

 cout << "Newton's Law of Cooling using Numerical Differentiation\n";

 cout << "Enter the initial temperature of the object (T_initial in °C): ";

 cin >> T_initial;

 cout << "Enter the surrounding temperature (T_env in °C): ";

 cin >> T_env;

 cout << "Enter the cooling constant (k): ";

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

 224 Numerical Methods and Programming in

C++

 cin >> k;

 cout << "Enter the time step (dt in seconds): ";

 cin >> dt;

 cout << "Enter the maximum simulation time (t_max in seconds): ";

 cin >> t_max;

 cout << "\nSimulating Newton's Law of Cooling...\n";

 newtons_law_of_cooling(T_initial, T_env, k, dt, t_max);

 return 0;

}

Input

Enter the initial temperature of the object (T_initial in °C): 80

Enter the surrounding temperature (T_env in °C): 25

Enter the cooling constant (k): 0.07

Enter the time step (dt in seconds): 1

Enter the maximum simulation time (t_max in seconds): 60

Output

Simulating Newton's Law of Cooling...

Time(s) Temperature(C)

0.000000 80.000000

1.000000 76.850000

2.000000 73.972450

3.000000 71.350387

4.000000 68.967869

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

 225 Numerical Methods and Programming in

C++

...

60.000000 25.021291

	Secant Method Steps
	Secant Method Convergence
	Secant Method Advantages and Disadvantages
	Steps:
	Given data:
	Summary of the Solution:
	Data:
	Transformation:
	Normal Equations:
	Explanation of the Solution:
	1. Curve: 𝒚=𝒂,𝒙-𝒃.
	2. Curve: 𝑦=𝑎,𝑒-𝑏𝑥. (Exponential Curve)
	3. Curve: ,𝑥-𝑎.𝑦=𝑏 (Gas Equation, e.g., 𝑝,𝑣-𝛾.=𝑘)
	Given:
	Given Data:
	Given Data: (1)
	Given Data: (2)
	Introduction to Interpolation
	When the Function is Unknown
	The Role of Finite Differences
	Key Interpolation Formulas
	Polynomial Interpolation
	1. Lagrange Interpolation
	Steps for Lagrange Interpolation:
	Example: 10

	2. Newton’s Interpolation
	Forward Differences:
	Steps for Newton Interpolation:
	Example: 11

	3. Advantages of Newton’s Method over Lagrange Method:
	4. Example Calculation
	Conclusion:
	Newton’s Forward Interpolation Formula
	Derivation and Formula
	Example:12
	Newton’s Backward Interpolation Formula
	Derivation and Formula (1)
	Example: 13
	Solution to the Problem Using Interpolation:
	The Given Table:

	Part (i): Finding 𝑦 when 𝑥=160 feet (using Newton’s Forward Interpolation Formula)
	Part (ii): Finding 𝑦 when 𝑥=410 feet (using Newton’s Backward Interpolation Formula)
	Final Answers:
	Problem: Estimating the Number of Students with Marks between 40 and 45
	Given Data: (3)
	Given:
	The formula:
	Calculation:

	EXAMPLE: 16
	Given Data: (4)
	Step 3: Calculate 𝑝 for 𝑥=−,1-3.
	Given Data: (5)
	Newton’s Forward Interpolation Formula:
	Given Data: (6)
	Step 2: Use the Given Differences
	Lagrange's Interpolation Formula for Unequal Intervals
	Derivation:
	Explanation of the Terms:
	Example: 20 Interpolating Polynomial for 3 Points
	Lagrange Interpolation Formula:
	For ,𝐿-0.,9.:
	For ,𝐿-1.,9.:
	For ,𝐿-2.,9.:
	For ,𝐿-3.,9.:
	For ,𝐿-4.,9.:

	Lagrange’s Interpolation Formula:
	For ,𝐿-0.,𝑥.:
	For ,𝐿-1.,𝑥.:
	For ,𝐿-2.,𝑥.:
	For ,𝐿-3.,𝑥.:
	For the first term:
	For the second term:
	For the third term:
	For the fourth term:

	Given Data: (7)
	For ,𝐿-0.,𝑥.:
	For ,𝐿-1.,𝑥.:
	For ,𝐿-2.,𝑥.:
	For ,𝐿-3.,𝑥.:
	For ,𝐿-0.,3.:
	For ,𝐿-1.,3.:
	For ,𝐿-2.,3.:
	For ,𝐿-3.,3.:

	Given Data: (8)
	For ,𝐿-0.,𝑡.:
	For ,𝐿-1.,𝑡.:
	For ,𝐿-2.,𝑡.:
	For ,𝐿-3.,𝑡.:

	Properties of Divided Differences
	Newton's Divided Difference Interpolation Formula
	Relation Between Divided and Forward Differences
	Solution:
	Formula:
	Steps to Apply the Formula:
	Example:26
	Here:

	Formula
	Steps to Use the Formula
	Example:29
	Newton-Gregory Forward Interpolation
	(a) Calculation of ,𝑒-0.12.
	Newton-Gregory Forward Formula:

	(b) Calculation of ,𝑒-2.
	Newton-Gregory Forward Formula:

	Lagrange’s Interpolation Formula with Unequal Intervals
	Formula Derivation
	Step-by-Step Formula
	Solution

	4.12. GAUSS SEIDAL ITERATION METHOD
	This is a modification of Gauss Jacobi method.
	We will consider the system of equations
	,𝒂-𝟏𝟏.,𝒙-𝟏.+,𝒂-𝟏𝟐.,𝒙-𝟐.+,𝒂-𝟏𝟑.,𝒙-𝟑.=,𝒃-𝟏.
	,𝒂-𝟐𝟏.,𝒙-𝟏.+,𝒂-𝟐𝟐.,𝒙-𝟐.+,𝒂-𝟐𝟑.,𝒙-𝟑.=,𝒃-𝟐.
	,𝒂-𝟑𝟏.,𝒙-𝟏.+,𝒂-𝟑𝟐.,𝒙-𝟐.+,𝒂-𝟑𝟑.,𝒙-𝟑.=,𝒃-𝟑.
	Where the diagonal coefficients are not zero and are large compared to other coefficients. Such a system is called a diagonally dominant system.

